Loading...

ÇмúÇà»ç

  >   ´º½º & Ä¿¹Â´ÏƼ   >   ÇмúÇà»ç

Á¦¸ñ [¹°·ù¹×°ø±Þ¸Á¿öÅ·±×·ì °øµ¿ÁÖÃÖ] ÇØ¿Ü¼®ÇÐ ÃÊû ¼¼¹Ì³ª
ÀÛ¼ºÀÚ KIIE µî·ÏÀÏ 2019-11-18
À̸ÞÀÏ admin@kiie.org
¡à ¼¼¹Ì³ª ¹è°æ ¹× ¸ñÀû
¿À´Ã³¯ SCM(°ø±Þ»ç½½°æ¿µ)Àº ±Û·Î¹ú °ø±Þ¸ÁÀÇ ºÒÈ®½Ç¼º°ú ºñÁî´Ï½º º¹À⼺ÀÌ ³ô¾ÆÁø ȯ°æ¿¡¼­ °Å´ëÇÑ º¯È­¸¦ ¸ÂÀÌÇϰí ÀÖ½À´Ï´Ù. 4Â÷ »ê¾÷Çõ¸í ±â¼úÀÎ ºòµ¥ÀÌÅÍ, ÀΰøÁö´É, IoT µî ÷´Ü ±â¼úÀº Á¡Â÷ °ø±Þ¸Á °æÀï·ÂÀÇ ¿øÃµÀÌ µÇ¾î ½º¸¶Æ® SCMÀ¸·Î¼­ °ø±Þ¸Á ³» Á¤º¸ È帧À» ½Ç½Ã°£À¸·Î °øÀ¯/ºÐ¼®ÇÏ¿© ½Å¼ÓÇϰí À¯¿¬ÇÑ ÀÇ»ç°áÁ¤¿¡ ¹Ý¿µÇÒ ¼ö ÀÖ´Â ´É·ÂÀÌ ÇмúÀû/½Ç¹«ÀûÀ¸·Î Áß¿äÇÑ ¹®Á¦·Î ´ëµÎµÇ°í ÀÖ½À´Ï´Ù. ÀÇ»ç°áÁ¤ ¸®½ºÅ©°¡ Å©°Ô Áõ°¡ÇÑ ½ÃÁ¡¿¡¼­ ½º¸¶Æ® SCM¿¡ ´ëÇÑ ¸íÈ®ÇÑ ÀÌÇØ°¡ ¿ä±¸µÇ¸ç, ±âȸ¿Í À§±â¿¡ ´ëÇÑ ¸é¹ÐÇÑ ºÐ¼®°ú ÅëÂûÀÌ ÇÊ¿äÇÕ´Ï´Ù. ±×·¯³ª ÇöÀç ±¹³»¿¡´Â ÷´Ü ±â¼úÀÌ Àû¿ëµÈ ½º¸¶Æ® SCMÀÇ ¸ð½ÀÀ» ÇÔ²² ±×·Á³ª°¡±â À§ÇØ ´ëÇÐ, »ê¾÷ü, ¿¬±¸±â°ü µîÀÇ ´Ù¾çÇÑ Àü¹®°¡µéÀÌ ¸ð¿©¼­ ÇÔ²² ¿¬±¸Çϰí Åä·ÐÇÏ´Â ÀåÀÌ ºÎÀçÇÑ »óȲÀÔ´Ï´Ù.
 
ÀÌ¿¡ 4Â÷ »ê¾÷Çõ¸íÀ¸·Î º¯¸ðÇÑ ¼­ºñ½º¿Í Á¦Á¶Çõ½ÅÀ» ¼±µµÇϱâ À§ÇØ ´ëÇÑ»ê¾÷°øÇÐȸ ¹°·ù¹×°ø±Þ¸Á¿öÅ·±×·ì, Çѱ¹SCMÇÐȸ ½º¸¶Æ®SCM¿¬±¸È¸¿Í °øµ¿À¸·Î ij³ª´Ù Åä·ÐÅä ´ëÇÐÀÇ ÀÌÄ¡±Ù ±³¼ö´ÔÀ» Ưº° ÃÊûÇÏ¿© Çмú ¼¼¹Ì³ª¸¦ ÁøÇà, À̸¦ ÅëÇØ ºÒÈ®½Ç¼º¿¡ ´ëÀÀÇÏ´Â Â÷¼¼´ë SCM¿¡ ´ëÇÑ ºñÀüÀ» Á¦½ÃÇϰíÀÚ ÇÕ´Ï´Ù.
 
¤· ¸ñÀû
±¹³»¿Ü Çаè/»ê¾÷°è/¿¬±¸¼Ò µîÀÇ °ü·Ã Àü¹®°¡µéÀÌ ¸ð¿©¼­ ºÒÈ®½ÇÇÑ »óȲ¿¡¼­ ÀÇ»ç°áÁ¤À» ÇØ¾ß ÇÏ´Â ±Û·Î¹ú SCM¿¡ MDP, °­È­ÇнÀ µî ´Ù¾çÇÑ ¹æ¹ý·ÐÀ» Àû¿ëÇÏ¿© ÃÖÀû ÀÇ»ç°áÁ¤ µµÃâÀ» À§ÇÑ Â÷¼¼´ë SCMÀÇ ¿¬±¸ÁÖÁ¦ µµÃâÀ» ³íÀÇÇÔ.
 
¤· ÀϽà : 2019. 11. 22.(±Ý) ¿ÀÈÄ 5½Ã 30ºÐ ~ 6½Ã 30ºÐ
¤· Àå¼Ò : °í·Á´ëÇб³ (¾È¾ÏÄ·ÆÛ½º) °øÇаü 562È£ (¾àµµ ÂüÁ¶)
 
 
¡à ÇØ¿Ü¼®ÇÐ ¼Ò°³
¤· ÁÖ¿ä ¾à·Â
- Michigan University, Industrial and Operations Engineering ¹Ú»ç
- Professor of Industrial Engineering at the University of Toronto
- Director of The Centre for Maintenance Optimization and Reliability Engineering (C-MORE)
- IBM, General Motors, Magna International, State Grid Corp of China µî ´Ù¼öÀÇ »ê¾÷ü ÀÚ¹®/°øµ¿¿¬±¸
¤· ¹ßÇ¥ ³»¿ë (ÃÊ·Ï)
Markov Decision Processes(MDP)´Â ºÒÈ®½ÇÇÑ »óȲ¿¡¼­ ¹®Á¦¸¦ ¼øÂ÷ÀûÀÎ ÀÇ»ç°áÁ¤ ¹®Á¦·Î Á¤ÀÇÇϸç Àç±ÍÀûÀÎ ÇüÅ·Π¹®Á¦¸¦ ÇØ°áÇÏÁö¸¸, ÀÌ´Â ³ôÀº º¹À⼺À» º¸Àδٴ ÇѰèÁ¡ÀÌ Á¸ÀçÇÑ´Ù. ÀÌ¿¡ ¹ÝÇØ, °­È­ ÇнÀ(RL)Àº ´Ù¾çÇÑ ´ë¾ÈÀ» Á¦°øÇÏ´Â ±Ù»ç ¾Ë°í¸®ÁòÀ¸·Î, ÃÖ±Ù RL ÇÁ·ÎÁ§Æ®¿¡¼­ MDP ±¸Á¶¿¡¼­ RL ±¸Á¶·Î ȹ±âÀûÀ¸·Î º¯È­½ÃÄÑ ½ÇÁ¦ ¹®Á¦¿¡ Àû¿ëÇÑ »ç·Ê¸¦ °øÀ¯ÇÑ´Ù.
 
¡à ¼¼ºÎ ÀÏÁ¤
½Ã°£
ÁÖ¿ä ³»¿ë
ºñ°í
17:15-17:30
µî·Ï ¹× ¾È³»
 
17:30-17:35
ȯ¿µ»ç
ÀÌö¿õ ½º¸¶Æ®SCM¿¬±¸È¸/¹°·ù¹×°ø±Þ¸Á¿öÅ·±×·ì ȸÀå
17:35-18:25
Journey from MDP to Reinforcement Learning with Applications in Revenue Management, Infrastructure Control and Process Control
ÀÌÄ¡±Ù ±³¼ö(University of Toronto)
18:25-18:40
ÁúÀÇÀÀ´ä ¹× ±â³äÃÔ¿µ
 
 
¡à ¾àµµ
¤· ¼¼ºÎ ÁÖ¼Ò :¼­¿ïƯº°½Ã ¼ººÏ±¸ ¾È¾Ï·Î 145 °í·Á´ëÇб³ ÀÚ¿¬°èÄ·ÆÛ½º °øÇаü 562È£
¤· ´ëÁß±³Åë : ¾È¾Ï¿ª(°í´ëº´¿ø) 4¹ø Ãⱸ [°í·Á´ëÇб³ ÀÚ¿¬°è]
÷ºÎÆÄÀÏ ÇØ¿Ü¼®ÇÐ_ÃÊû_¼¼¹Ì³ª_ÀÌÄ¡±Ù.hwp