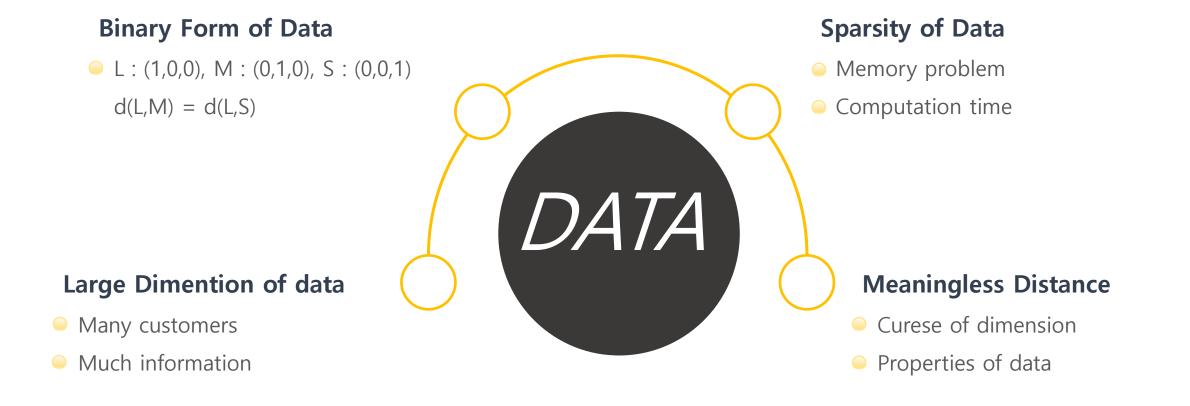

Modularity Based Mapper Clustering Algorithm for Insurance Customer Data

Juhyun Kim, Kyoung-Kuk Kim (Department of Industrial and Systems Engineering, KAIST)

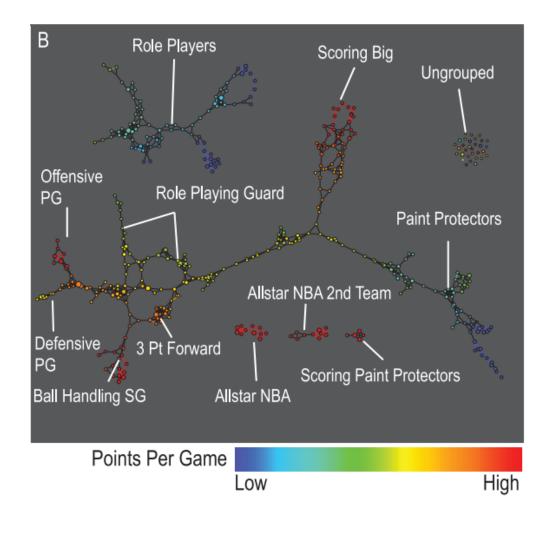
Modularity Based Mapper Clustering Algorithm for

Motivation

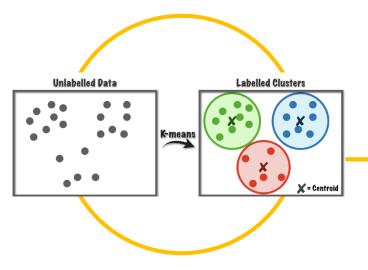
- Market for big data has continued to grow → financial and insurance industries are among the most keen players in using big data.
- ■ Relevant datasets contain private information → de-identification necessary.


 Customer profiling and clustering is very important in customer-centric businesses → any dominant method is yet to be seen.

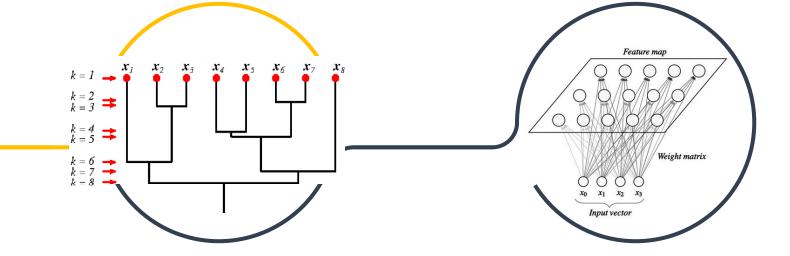
Problem : Why Dosen't Clustering Work?



Solve problems by generating the hidden structure of data


Our Approach

- We focus on the hidden structure of data, not a distance between data point → our approach: generate the structure of data using mapper.
- The structure of mapper heavily depends on the parameters; yet very few research outputs → our approach: find the persistent structure in terms of modularity.
- Evaluate the clustering results from different viewpoints → association rule, customer-centric measure, cluster validity, feature distribution.



Clustering Algorithms

- Determine randomly initial center and each initial cluster consists of data points which share the closest initial center.
- Find better centers and clusters iteratively.

Hierarchical Clustering

- Start by letting each data point be a distinct cluster.
- Proceed by merging two closest clusters into larger ones iterative ly.

Self-organizing Map

Map the input data from a high dimensional space to a lower dimen sional plot while maintaining original topological relations.

Evaluation Methods

Association Rule Mining

- Count the number of generated association rules.
- Use the result for marketing.

RFM Analysis

 Find characteristics of customers by using three factors : Recency, Frequency, Monetary.

Feature Distribution

tribution per clusters.

in a cluster.

Show important feature dis-

Find the pattern of customers

Cluster Validity Index


- Measure the sparation between custers and compactness in a cluster.
- Use FS index, XB index, and BH index.

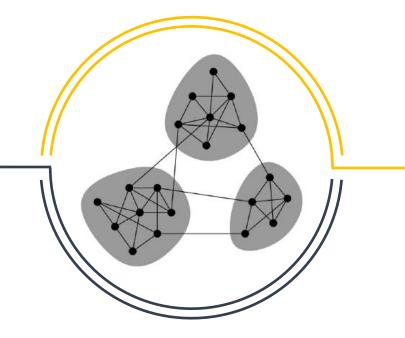
Mapper

Mapper

- Useful tool which converts a data set into a graph structure.
- Mapper construction
- Put data into overlapping bins.
- Cluster each bin & create network.
 Vertex = a cluster of a bin.
 Edge = nonempty intersection
 - between clusters.
- Parameters
- Lens(f) : scalar function for input data.
- Resolution(S) : the number of bins.
- ► Gain : overlapping percentage.

Example of a mapper structure

• f = y-coordinate, S = 5, Gain = p.

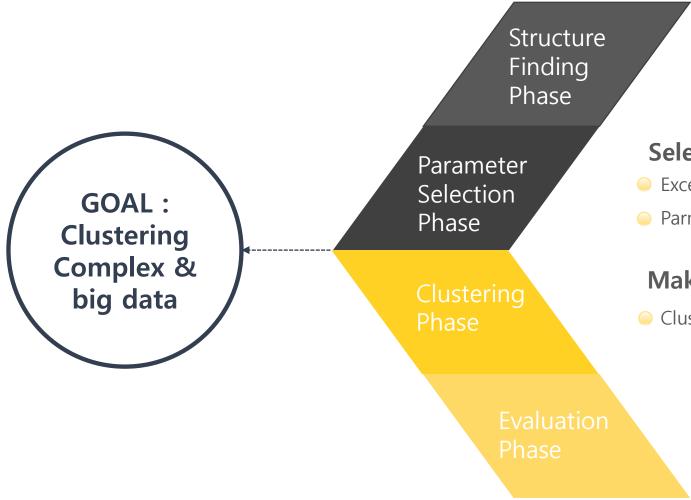

Modularity

Modularity

 Capture how good given communities are compared to a randomly wired network.

$$\mathcal{Q} = \frac{1}{2m} \sum_{vw} \left[A_{vw} - \frac{k_v k_w}{2m} \right] \delta(c_v, c_w).$$

Beyond about 0.3 is a good indicator of significant community in the network.



Modularity Maximizaion

- Modularity is variable in a single network affected by the shape of communities.
- Use greed approach to find an optimal modularity.
- Calculate moduality change when communites are combined.
- Select the largest value, join the corresponding communites.
- ▶ Repeat above steps.

Modularity Based Mapper Clustering

Find persistent hidden structure

 Persistent structure in terms of the number of communities and maximum modularity value.

Select the best parameter set

- Exception for outlier cases.
- Parmeter set having the simplest mapper structure.

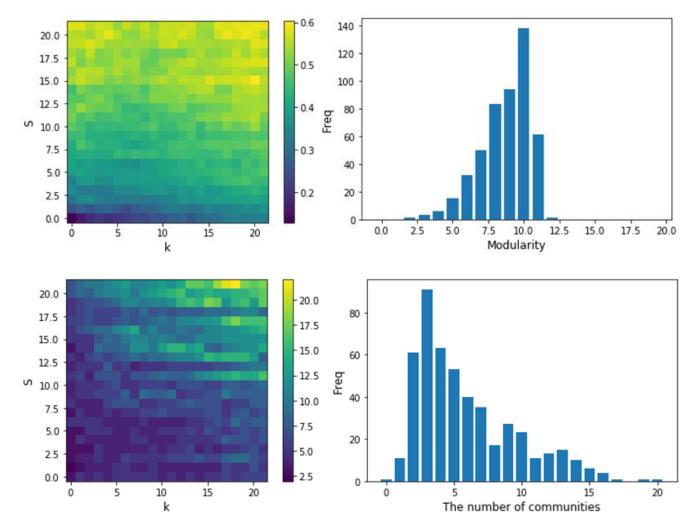
Make clusters using communities

Olusters comprise data points in communities.

Evaluate the outcomes

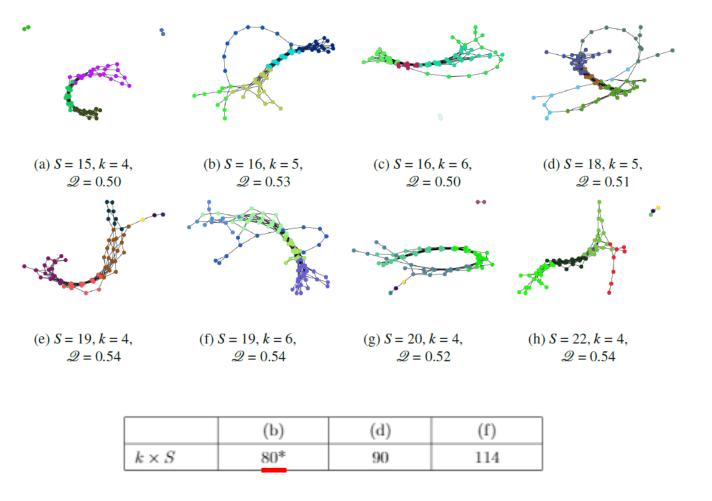
 Association rule ming, RFM analysis, custer validity index, feature distribution.

Date Set


- The data set consists of customers in insurance, card, and bank companies.
- The number of customer is about 80,000 (data matrix has over 80,000 rows).
- All information is converted into binary vector (data matrix has over 590 columns).
- Categorical : binary vector per each category.
- Numerical : binary vector per some unit.
- The data set includes demographic, financial, and personal information (after de-identification).

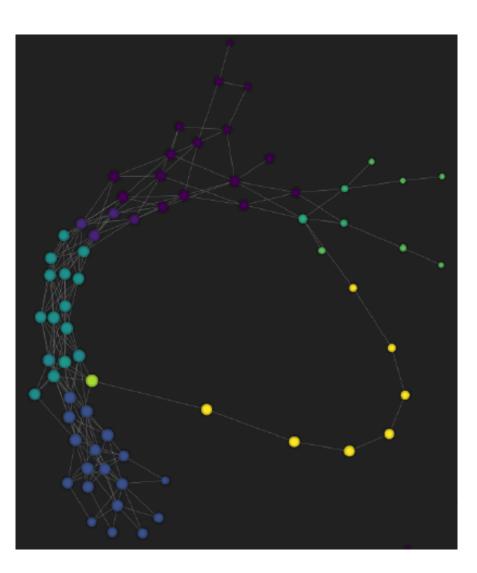
Variable name	Data type	Description			
Matching	Binary	Product purchase record; Buy: 1, Not buy: 0;			
Matching		307 columns(307 products: Insurance + Riders)			
Gender	Binary	Male: 0, Female: 1; 1 column			
Valid	Numerical	The number of valid insurance policy; 16 columns			
Invalid	Numerical	The insurance is classified invalid because of non-payment; 5 columns			
Cancel	Numerical	The number of insurance has been canceled; 5 columns			
Insurance	Numerical	Sum of Valid and Invalid ; 7 columns			
Ratio	Numerical	Riders over Insurance ; 12 columns			
Premium	Numerical	total premium of a person; 17 columns			
Avg Pre	Numerical	Premium over Insurance; 14 columns			
CMIP	Numerical	total CMIP of a person; 13 columns			
Avg CMIP	Numerical	CMIP over Insurance; 13 columns			
Duration min	Numerical	The time from the last policy contract(month); 16 columns			
Duration max	Numerical	The time from the first policy contract(month); 16 columns			
Age	Numerical	The age of a person(years); 13 columns			
Job risk	Numerical	The risk of a person determined by the firm; 5 columns(5 classes)			
Job	Categorical	The job of a person; 28 columns			
Address	Categorical	The address of a person; 18 columns			
Hobby	Categorical	The hobby of a person; 16 columns			
Card	Categorical	The grade of card firm membership; 4 columns(4 classes)			
Group	Categorical	The grade of group firm membership; 5 columns(5 classes)			
Home	Categorical	The shape of home; 5 columns			
Life	Categorical	The shape of living; 6 columns			
Credit	Binary	Hold credit card: 1, Not: 0; 1 column			
Credit pay	Numerical	The monthly pay of credit card; 16 columns			
Debit	Binary	Hold debit card: 1, Not: 0; 1 column			
Debit pay	Numerical	The monthly pay of debit card; 13 columns			
Salary	Binary	Have a pay: 1, Not: 0; 1 column			
Salary pay	Numerical	The amount of a salary; 14 columns			
Annuity	Numerical	Receive: 1, Not: 0 (only 3 people receive); 1 columns			
Annuity pay	Numerical	The amount of an annuity; 1 columns(all people similar)			

Result : Structure Finding Phase


- Let f = isoforest function, gain = 0.15 and use hierarchical clustering with k.
- The range of S and k is 4 to 25.
- Measure the maximum modularity and count the frequency of communities by increasing the interval size by 0.05.
- The most frequent interval is 0.50~0.55
- Count the number of communities.
 The most frequent number is 5

Result : Parameter Selection Phase

- There are 8 candidates having the persistent structure.
- Except the cases where a single node (or two nodes) consists of community: (a), (c), (e), (g), and (h).
- Select the parameter set with the simplest structure.
- In a mapper, number of nodes = k×S
 → choose small value of k×S.
- Select (b) with S = 16, k = 5, and Modularity = 0.53.



Result : Clustering Phase

 Selected mapper has the most persistent and simplest structure.

- Consider each community as a cluster.
- The data points correspond to nodes in a community consist of a cluster.
- There are 5 clusters and clusters denote different color.
- Since this clustering has overlapping, some nodes have mixed color.

Result : Evaluation Phase

ARM Result

- Compare the number of association rules.
- Use the result for insurance recommendation.

RFM Analysis Result

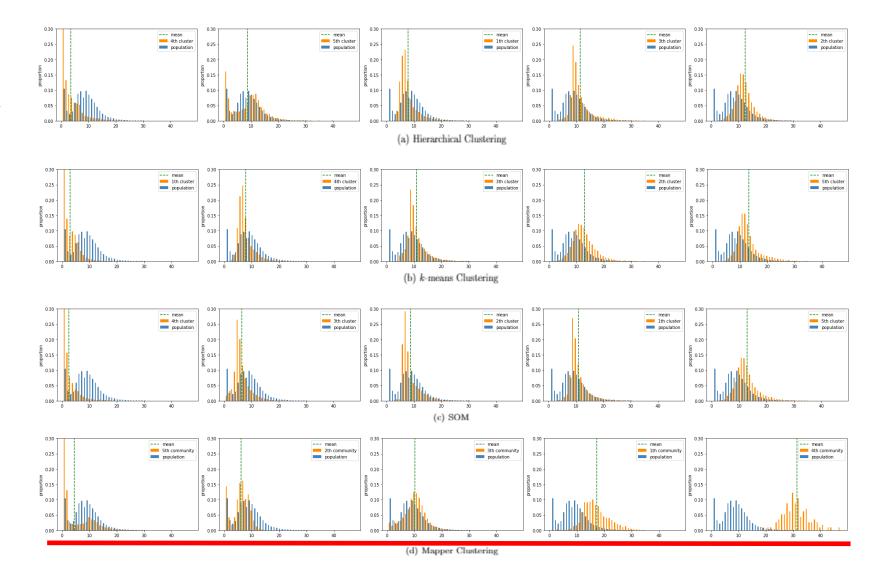
- Compare the RFM score of clusters and range of it.
- Use the result for customer valuation.

Cluster Validity Index Result

- Compare corresponding indices.
- The result shows clusters are well separated.

Clustering Algorithm	The number of rules		
k - means Clustering	8916		
Agglomerative Clustering	2278		
SOM	4552		
Mapper Clustering	14989*		

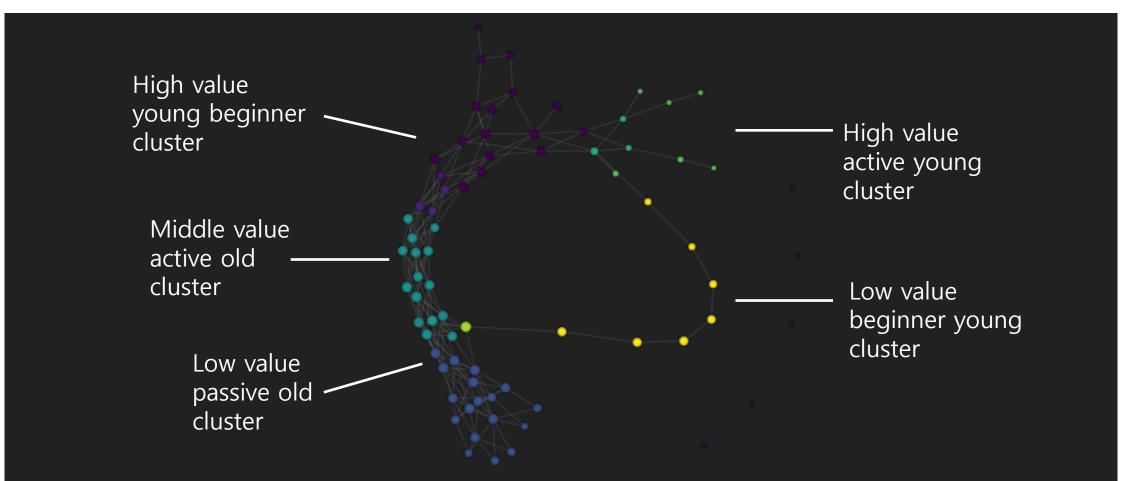
	Very High	High	Middle	Low	Very Low	Range of Score
k - means Clustering	11.96(2)	11.17(5)	9.42(3)	7.97(1)	6.95(4)	5.01
Agglomerative Clustering	11.50(2)	9.65(3)	9.08(5)	8.31(4)	6.97(1)	4.53
SOM	11.49(1)	9.39(5)	8.61(2)	7.48(4)	6.62*(3)	4.87
Mapper Clustering	13.66*(4)	13.10(1)	9.91(3)	8.94(5)	7.00(2)	6.66*


	FS index (10^6)	XB index (10^3)	BH index (10^6)
k - means Clustering	2.5769	42.3663	71.7427
Agglomerative Clustering	2.5778	170.9349	213.1737
SOM	2.5771	6.4009	19.4333
Mapper Clustering	<u>2.5062</u> *	5.6205*	7.2079*

Result : Evaluation Phase

Feature Distribution Result

- Choose important feature → the number of buying product.
- Compare distribution of the feature for each cluster → find the pattern or properties of each cluster.
- For orther feature, we apply similar approach.
- Use the result for customer profiling \rightarrow See next page.



Additional Result : Clustering

Analysis(tagging??)

Features : the number of insurance, age, and duration(min&max).

Conclusion & Future Work

- For clustering financial and insurance data, the major challenges are the big size and complex form of data. It may make any distance measure between data points meaningless.
- We propose the modularity based clustering algorithm to find the hidden structure of data and generate clusters. To our knowledge, our model is a new approach combining a mapper algorithm and network analysis.
- We apply our algorithm to a real insurance customer dataset and find it outperform some other well known methods in terms of: recommendation, customer value, validity of clusters, and customer pattern.
- It remains to be seen the impact of TDA and network analysis together.

Thank You!!!