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Two-dimensional Two-staged Knapsack Problem

n=3, N=28,
hi: height, w;: width,
pi: profit, d;: demand

H=4
h =3 hy, = h3 =1

W=4 wp =1 wy =2 w3 =

. . i dr =2 dz3 =3

Only one plate is given Z pr = 10 =2

A General Two-dimensional Knapsack Problem

What is the maximum profit obtained by cutting small items from the
large plate?
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Two-dimensional Two-staged Knapsack Problem

n=3, N=38,
hi: height, w;: width,
pi: profit, d;: demand

H=4
h =3 h =1 h3 =1
W=4 wp =1 wy =2 w3 =
. . d =3 dr =2 d3 =3

nly one plate is given ! 2 3
Only p g pL=17 p2 = 10 ps =2

A Two-dimensional Two-staged Knapsack Problem

What is the maximum profit obtained by cutting small items from the
large plate using two-stage guillotine cuts?
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Examples of Two-staged Cutting

n=3, N=38,
h;: height, w;: width,
p;: profit, d;: demand
H=4
hy =3 ho h3 =1
W =4 wp =1 wy =2 w3 =1
. . dp =3 dy =2 d3 =3
Only one plate is given =7 pr— 10 pr— 2
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Two-dimensional Two-staged Knapsack Problem
Examples of Two-staged Cutting

Total Profit: 30 1 Left 1 Left 0 Left
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Two-dimensional Two-staged Knapsack Problem
Examples of Two-staged Cutting

First Stage Cuts Strips (Levels)
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Examples of Two-staged Cutting

N
o —
Second Stage Cuts
(Strip by strip)
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Examples of Two-staged Cutting

Second Stage Cuts
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Two-dimensional Two-staged Knapsack Problem
Examples of Two-staged Cutting

|

Second Stage Cuts Trimming
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Two-dimensional Two-staged Knapsack Problem
Examples of Two-staged Cutting

> e

_)‘

Black: Strip Defining Items
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Two-dimensional Two-staged Knapsack Problem
Examples of Two-staged Cutting

1 Set strip-defining items first.
2 Locate the rest of the items (with lower heights) into each strip.

Second Stage Cuts Trimming
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Two-dimensional Two-staged Knapsack Problem

@ Industrial guillotine cutters: efficiency and accuracy.
e One of the restrictions is two-staged guillotine cutting.
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Two-dimensional Two-staged Knapsack Problem

@ Industrial guillotine cutters: efficiency and accuracy.
e One of the restrictions is two-staged guillotine cutting.

@ Close relationship with the two-dimensional two-staged guillotine
cutting stock problem
e Sharing the same two-staged guillotine cutting constraint
e Knapsack problem: a slave problem

@ NP-hard in a strong sense
e Reduction from the 3-PARTITION problem
e Unanswered research issues exist yet.
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Introduction Literature Review

Literature Review

@ Integer programming models:

o Gilmore and Gomory (1965) [12]: Strip Packing Model
o Lodi and Monaci (2004) [18]: Level Packing Model
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Introduction Literature Review

Literature Review

@ Integer programming models:

o Gilmore and Gomory (1965) [12]: Strip Packing Model
o Lodi and Monaci (2004) [18]: Level Packing Model

@ Exact Methods:
o Hifi (2001) [13]: Dynamic Programming
o Belov and Scheithauer (2006) [2]: Branch-and-cut-and-price Algorithm

© Heuristics:

o Hifi and M'Hallah (2006) [14]: Strip Generation Algorithm
o Alvarez-Valdes et al. (2007) [1]: Path Relinking Methods.
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Introduction Literature Review

Contributions

1 Introduced new formulations for the problem based on concepts
proposed for the two-dimensional two-staged cutting stock problem
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Introduction Literature Review

Contributions

1 Introduced new formulations for the problem based on concepts
proposed for the two-dimensional two-staged cutting stock problem

2 Proved the existence of polynomial-size formulation

3 Established a hierarchy of the LP-relaxation values
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Introduction Literature Review

Contributions

1 Introduced new formulations for the problem based on concepts
proposed for the two-dimensional two-staged cutting stock problem

2 Proved the existence of polynomial-size formulation

3 Established a hierarchy of the LP-relaxation values

4 Developed some exact methods and tested them computationally.
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Integer Programming Models

Integer Programming Models

U4+ /Kang Suho (SNU)

Seminar



Existing Models
Existing Models: (1) A Level Packing Model (LM)

e Lodi and Monaci (2004) [18]
1 Determine which items will be used as strip-defining items.

2 Then, pack the rest of the items.
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Integer Programming Models Existing Models

Existing Models: (1) A Level Packing Model (LM)

LM : maximize Zkaijk
Jj=1 k=1

J

subject to Z vje{l,...,N}
k=1

N
Z WﬂijkS(W_Wﬂk)kaa Vke{]'v?N}
Jj=k+1

N

Z hg Xk < H,
k=1

X € {0,1}, Vke{l,...,N}, Vje{k,...,N}.

@ The size of the formulation depends on the total numbers of items N
not the number of item types n. (Pseudo-polynomial-size model)
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A
Modification of a Level Packing Model

We add the following set of valid inequalities to LM:
Xik < Xk, VkG{l,...,N}, VjG{k—i—l,...,N}.

(In a strip, each item should not be used more than the strip-defining
item.)

@ Improve the quality of the LP-relaxation value

@ Ease analyzing the relationship between other models.
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Existing Models
Existing Models: (2) A Strip Packing Model (PM)

@ Gilmore and Gomory (1965) [12]

1 Width patterns: the combination of items whose total width is below W.
2 One width pattern — One strip

3 Pack these width patterns with their total height below H.

Width Pattern (1,1,1), Width Pattern (0,2,0),
Height: 3 Height: 2
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Existing Models
Existing Models: (2) A Strip Packing Model (PM)

PM: maximize Z Zp,-aq,-xq

qEPy(d) i€ln
subject to Z agixg < di, Vi€l
qEPy (d)
Y hgxa <H,
qE€Pw(d)
Xq c Z+, Vq S PW(d)

e Exponentially many width patterns exist. (Exponential-size model)
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Proposed Model
Proposed Models: (3) A Staged-pattern Model (SM)

1 Mrad et al. (2013) [22]
o Propose the concept of height patterns at the two-staged
two-dimensional cutting stock problem

2 Height patterns: the combination of strip-defining items whose total
height is below H.
3 Choose adequate width patterns to complete the cutting.

Height Pattern (1,0,1)
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Proposed Model
Proposed Models: (3) A Staged-pattern Model (SM)

1 Mrad et al. (2013) [22]
o Propose the concept of height patterns at the two-staged
two-dimensional cutting stock problem

2 Height patterns: the combination of strip-defining items whose total
height is below H.
3 Choose adequate width patterns to complete the cutting.

Width Pattern (0,0, 3),(2,1,0)
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Proposed Model
New Models: (3) A Staged-pattern Model (SM)

SM: maximize

subject to

Z Z PidqiXq

qePy(d) i€l

> agixg < di,

qEPy (d)
Z briyr > Z Xq»
rePy(d) qEPy (d),t(q)=i
> o<,
rePy(d)

xXq € Z4, Vq € Pw(d),
y€Zy, Vre PH(d).

Vi € Iy,

Vi € In,

@ Exponentially many width patterns and height patterns exist.
(Exponential-size model)
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Proposed Model
New Models: (4) An Arc-flow Model (AF)

1 Macedo et al. [20]:

o Extend the concept of arc-flow model to the two-staged
two-dimensional cutting stock problem

2 Represent patterns as the flow of the certain graph

Height Pattern (1,0,1) Height Pattern Graph
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Proposed Model
New Models: (4) An Arc-flow Model (AF)

1 Macedo et al. [20]:
o Extend the concept of arc-flow model to the two-staged
two-dimensional cutting stock problem

2 Represent patterns as the flow of the certain graph

RV
¢ o009

Width Pattern (0, 0, 3)
Width Pattern (2, 1, 0)

0 Width Pattern Graphs
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Proposed Model
New Models: (4) An Arc-flow Model (AF)

AF :  maximize

subject to

> X .#a,b,i)xza,b,i)

J€ln (a,b,i)eA

—1 ifb=0
0 0 .
S X(a,b,i) — S Xbeky =10 ifb=1,...,H=1,

(a,b,i)€ A0 (b,c,k)eA0 1 ifb=H

0 j .
> Xe,cthy k) =2 =0, V€ hn,
(c,c+hj,k)eA0

Z _X(d,e,i) - _Xée,f,k)
(d,e,i)EA (e,f, k) EA
—z ife=0
= O_ ife=1,...,W—1, Vj€El,
2 ife=

> X X{f,erw,-,i) < dp, Vi€,

J€In (£, frwj, €Al

All variables are nonnegative integers.

@ The size of the formulation depends on H and W.

ang Suho (SNU)

(Pseudo-polynomial-size model)
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Theoretical Analysis

Theoretical Analysis
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Theoretical Analysis Existence of a Polynomial-size Model

Existence of a Polynomial-size Formulation

Eisenbrand and Shmonin [8] provides the upper bound on numbers of
nonzero components in the optimal solution in integer linear programming
problems.

Lemma 1

Let pmax and dpmax indicate the maximum value of components in given p
and d, respectively. Then, there exists an optimal solution with at most
M = [loga(n) + loga(Pmax) + (n + 1)loga(dmax) + loga(H)] different types
of width patterns.

@ Split the integer variables into binary variables.

@ Transform the multiplication of binary variables into linear constraints
with a new binary variable.
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Theoretical Analysis Existence of a Polynomial-size Model

Existence of a Polynomial-size Formulation: POLY

n M D D P
. -
maximize E E g 2 PiSikml! (_’;.‘,(, < z,-m, ik, m,
i=1 m=1k=1 =1 -
M b Ll
—15 m .
_ . S 2" A > biz", Wi,m
subjectto > D> g < d, Vi =1 mes T

3
I

L
T
L

Mo 1M IMe

M=

Sikmi = G + Xmi — L, Vi, k,m, 1,

3

S

—1

2lygl <w, vm, Sikmi < s Vi k,m, 1,

Sikml < Xmi, Vi, k,m, 1,

Il
-

_ Ftt > Xmi + Ame — 1, Vm, I, t
2/+t 2rmltSH7 mlt m) m ) PR

Mz

mit < Xmis  Ym, 1t

3
i
L
T
L

t:

Il
-

tmie < FAme,  Ym, It
-1

Me
N
.
el

m m . . _ - .
i < dizj, Vi,m, all variables s, g, H, r, z are binary.

x>
Il
iR

@ Many logical constraints — weak upper bound
@ The first polynomial-sized model
o O(nlogy(dmax)?(n10gs(dmax) + 1085 (Pmax) + loga(H)))
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Theoretical Analysis

Upper bounds provided by the LP-relaxations

Optimal objective value: z*
Optimal objective value of the LP relaxation of model "M": zM

Theorem 1

75 < 7SM < PM < LM

Theorem 2
2% < ;SM < LAF
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s B s Camz 2
Upper bounds provided by the LP-relaxations

Optimal objective value: z*
Optimal objective value of the LP relaxation of model "M": zM

Theorem 1
75 < M < ZPM < JLM J
Theorem 2
7t < ZSM < AAF J

LM Explicitly choose strip-defining items and then construct strips.
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s B s Camz 2
Upper bounds provided by the LP-relaxations

Optimal objective value: z*
Optimal objective value of the LP relaxation of model "M": zM

Theorem 1
75 < M < ZPM < JLM J
Theorem 2
7t < ZSM < AAF J

LM Explicitly choose strip-defining items and then construct strips.
PM Packing predefined strips.
SM Packing strips with a predefined height pattern.

AF Use graphs to indicate which patterns are used.
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s B s Camz 2
Upper bounds provided by the LP-relaxations

Because of the knapsack structure, the following theorem holds:
Theorem 3
ZIM < 2PM < 4,5M

Proof.

z"M < 27PM: Compensation for a partly used item in each strip

zPM < 225M: Compensation for a partly used strip in a plate Ol

Also, there exists a tight example of the above inequality.
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s B s Camz 2
Upper bounds provided by the LP-relaxations

Because of the knapsack structure, the following theorem holds:

Theorem 3
ZIM < 2,PM < 4,5M

Proof.

z'M < 27PM: Compensation for a partly used item in each strip

zPM < 275M: Compensation for a partly used strip in a plate

Also, there exists a tight example of the above inequality.

— ¥ < ZSM < ZPM < ZLM < 2ZPM < 4ZS|\/|
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Computational Analysis

Computational Analysis
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Exact Methods

e LM: Branch-and-cut (Delayed constraint generation)
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Exact Methods
Exact Methods

e LM: Branch-and-cut (Delayed constraint generation)
@ PM: Branch-and-price

@ SM: Branch-and-price
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Exact Methods
Exact Methods

LM: Branch-and-cut (Delayed constraint generation)

@ PM: Branch-and-price

SM: Branch-and-price

AF: Branch-and-bound

POLY: Branch-and-bound
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gl
Delayed Constraint Generation of LM

We add the following set of valid inequalities to the original form of LM:

Xjk < Xkk, VkG{l,...,N}, VjG{k—{—l,...,N}.

@ The number of added inequalities: O(N?)
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gl
Delayed Constraint Generation of LM

We add the following set of valid inequalities to the original form of LM:
Xjk < Xk, Vke{l,...,N}, Vjelk+1,...,N}.
@ The number of added inequalities: O(N?)
1 Discard the inequalities at the beginning.

2 At each node, solve the LP-relaxation and check whether violated
inequalities exist.

U435 /Kang Suho (SNU) Seminar Nov 13, 2020 27 /37



gl
Delayed Constraint Generation of LM

We add the following set of valid inequalities to the original form of LM:
Xjk < Xk, Vke{l,...,N}, Vjelk+1,...,N}.
@ The number of added inequalities: O(N?)
1 Discard the inequalities at the beginning.

2 At each node, solve the LP-relaxation and check whether violated
inequalities exist.

3 Add violated inequalities to the descendants of the node.
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Branch-and-price Algorithms of PM and SM

@ The number of pattern variables: O(2").
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Branch-and-price Algorithms of PM and SM

@ The number of pattern variables: O(2").

1 Start with the basic pattern variables.

2 For each node, solve the LP-relaxation and check whether more
pattern variables are needed.
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gl
Branch-and-price Algorithms of PM and SM

@ The number of pattern variables: O(2").
1 Start with the basic pattern variables.

2 For each node, solve the LP-relaxation and check whether more
pattern variables are needed.

3 If needed, generate new pattern variables and repeat the procedure.
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(@M ENNEINAGEIEE  Computational Experiments

Computational Experiments

@ Solvers offered by Xpress 8.9 [9]
Intel(R) Core(TM) i7-4770 CPU @ 3.10GHz and 16GB of RAM

Time Limit: 600 s.

Benchmark instances proposed by Hifi and Roucairol (2001) [15]:

o Small: 16 instances (40 x 40 — 130 x 130)
o Large: 20 instances (200 x 200 — 900 x 900)
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Computational Analysis Computational Experiments

Computational Experiments

@ Solvers offered by Xpress 8.9 [9]
Intel(R) Core(TM) i7-4770 CPU @ 3.10GHz and 16GB of RAM
@ Time Limit: 600 s.

@ Benchmark instances proposed by Hifi and Roucairol (2001) [15]:

o Small: 16 instances (40 x 40 — 130 x 130)
o Large: 20 instances (200 x 200 — 900 x 900)

—

# of instances solved to optimality within the time limit

N

Gap between the lower bound and z* (Unsolved instances):

(Optimal objective value)—(Best Lower Bound) 0
(Optimal objective value) X 100( A))

o IP gap =

3 Gap between the upper bound and z*

LP-relaxation value)—(Optimal objective value) 0
(Optimal objective value) X 100( %’)

° LPgap:(
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(@M ENNEINAGEIEE  Computational Experiments

Results: Small Instances

@ Except for POLY, all models solved all instances to optimality

10

. 816.87 |

£ 6f .
o
S

o 4l 3.54 3.6 |
]

20 I I 1.381

0 i

LM AF PM SM

Figure: Average LP gaps.
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10

LP Gap(%)

N

1.38

16.87
6 |
4l 3.54 3.6
0 I I
LM AF PM

Figure: Average LP gaps.
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10

o zF and z"M: incomparable

16.87
6 i
41 3.54 3.6 | e Far from z'M < 27PM < 475M
0 1
LM AF PM

SM

LP Gap(%)

N

Figure: Average LP gaps.
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Results: Large Instances
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= e but requires a lot of time
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Figure: Average LP gaps.
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Conclusion

Conclusion and Further research

Introduced formulations and established their theoretical hierarchy
@ SM: competitive theoretical and computational performance

@ POLY: the first polynomial-size formulation of the problem
e But its real usage is not recommended.

o LM, AF: limitation in solving large instances.
e Z*F and z*M?
@ Polynomial-size with a decent upper bounds?

U435 /Kang Suho (SNU) Seminar Nov 13, 2020 35/37



Conclusion

References |

ﬁ R. Alvarez-Valdes, R. Marti, J. M. Tamarit, and A. Parajén.
Grasp and path relinking for the two-dimensional two-stage cutting-stock problem.
INFORMS Journal on Computing, 19(2):261-272, 2007.

ﬁ G. Belov and G. Scheithauer.

A branch-and-cut-and-price algorithm for one-dimensional stock cutting and
two-dimensional two-stage cutting.

European journal of operational research, 171(1):85-106, 2006.

B J. O. Berkey and P. Y. Wang.
Two-dimensional finite bin-packing algorithms.
Journal of the operational research society, 38(5):423-429, 1987.

ﬁ V. M. Bezerra, A. A. Leao, J. F. Oliveira, and M. O. Santos.

Models for the two-dimensional level strip packing problem—a review and a
computational evaluation.

Journal of the Operational Research Society, 71(4):606-627, 2020.

U4+ /Kang Suho (SNU) Seminar Nov 13, 2020 36 /37



References |l

ﬁ A. Caprara and M. Monaci.
On the two-dimensional knapsack problem.
Operations Research Letters, 32(1):5-14, 2004.

[3 M. Conforti, G. Cornuéjols, G. Zambelli, et al.
Integer programming, volume 271.
Springer, 2014.

[@ M. Dolatabadi, A. Lodi, and M. Monaci.
Exact algorithms for the two-dimensional guillotine knapsack.
Computers & Operations Research, 39(1):48-53, 2012.

@ F. Eisenbrand and G. Shmonin.
Carathéodory bounds for integer cones.
Operations Research Letters, 34(5):564-568, 2006.

ﬁ FICO® Xpress Optimization, 2020. [Online].
https://www.fico.com/.

U4+ /Kang Suho (SNU) Seminar Nov 13, 2020 36 /37


https://www.fico.com/

Conclusion

References IlI

[3 F. Furini and E. Malaguti.

Models for the two-dimensional two-stage cutting stock problem with multiple

stock size.
Computers & Operations Research, 40(8):1953-1962, 2013.

@ M. R. Garey and D. S. Johnson.
Computers and intractability, volume 174.

freeman San Francisco, 1979.

ﬁ P. Gilmore and R. E. Gomory.
Multistage cutting stock problems of two and more dimensions.
Operations research, 13(1):94-120, 1965.

& M. Hifi

Exact algorithms for large-scale unconstrained two and three staged cutting
problems.
Computational Optimization and Applications, 18(1):63-88, 2001.

U4+ /Kang Suho (SNU) Seminar Nov 13, 2020

36 /37



Conclusion

References IV

ﬁ M. Hifi and R. M'Hallah.
Strip generation algorithms for constrained two-dimensional two-staged cutting
problems.
European Journal of Operational Research, 172(2):515-527, 2006.

[@ M. Hifi and C. Roucairol.
Approximate and exact algorithms for constrained (un) weighted two-dimensional
two-staged cutting stock problems.
Journal of combinatorial optimization, 5(4):465-494, 2001.

[8 H. Kellerer, U. Pferschy, and D. Pisinger.
Knapsack Problems.
Springer, Berlin, Germany, 2004.

ﬁ S.-J. Kwon, S. Joung, and K. Lee.
Comparative analysis of pattern-based models for the two-dimensional two-stage
guillotine cutting stock problem.
Computers & Operations Research, 109:159-169, 2019.

435 /Kang Suho (SNU) Seminar Nov 13, 2020 36 /37



References V

[3 A. Lodi and M. Monaci.

Integer linear programming models for 2-staged two-dimensional knapsack
problems.

Mathematical Programming, 94(2-3):257-278, 2003.

[3 M. E. Liibbecke and J. Desrosiers.
Selected topics in column generation.
Operations research, 53(6):1007-1023, 2005.

ﬁ R. Macedo, C. Alves, and J. V. De Carvalho.
Arc-flow model for the two-dimensional guillotine cutting stock problem.
Computers & Operations Research, 37(6):991-1001, 2010.

ﬁ J. Martinovic, G. Scheithauer, and J. V. de Carvalho.

A comparative study of the arcflow model and the one-cut model for
one-dimensional cutting stock problems.

European Journal of Operational Research, 266(2):458-471, 2018.

U4+ /Kang Suho (SNU) Seminar Nov 13, 2020

36 /37



Conclusion

References VI

[] M. Mrad, I. Meftahi, and M. Haouari.
A branch-and-price algorithm for the two-stage guillotine cutting stock problem.
Journal of the Operational Research Society, 64(5):629-637, 2013.

[ E. Silva, F. Alvelos, and J. V. de Carvalho.

An integer programming model for two-and three-stage two-dimensional cutting
stock problems.
European Journal of Operational Research, 205(3):699-708, 2010.

@ A. Steinberg.
A strip-packing algorithm with absolute performance bound 2.
SIAM Journal on Computing, 26(2):401-409, 1997.

ﬁ G. Wascher, H. HauBner, and H. Schumann.
An improved typology of cutting and packing problems.
European journal of operational research, 183(3):1109-1130, 2007.

U4+ /Kang Suho (SNU) Seminar Nov 13, 2020 36 /37



The End

Thank you for listening.
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Small Instances

OPT
2,535

Name n W  H Wnin  Wmax  Hmin Amax  dmin_ d|
9 31 7 35
2s 10 40 70 9 31 7 35
3 20 40 70 9 33 11 43
9
9

3

U WWWa O owhsSDSDDWW|Y
f.ﬂ
0
[o )
o

35 20 40 70 33 11 43

Als 20 50 60 33 11 43
A2s 20 60 60 12 33 14 42
A3 20 70 80 15 35 14 43

A4 20 90 70 9 33 1 43

A5 20 132 100 13 69 12 63
CHL1 30 132 100 13 69 12 63
CHL1s 30 132 100 13 69 12 63
CHL2 10 62 55 11 31 9 31
CHL2s 10 62 55 11 31 9 31
CHL5 10 20 20 1 20 2 14
CHL6 30 130 130 18 69 12 63
CHL7 35 130 130 19 57 18 54

16,572
16,728

e e
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Large Instances

Name n W H Wmin  Wmax  Fmin Fmax  dmin  dmax OPT
ATP30 38 927 152 57 360 7 58 1 9 140,168
ATP31 51 856 964 44 331 50 380 1 9 820,260
ATP32 56 307 124 16 120 6 46 1 9 37,880
ATP33 44 241 983 15 90 52 390 1 9 235,580
ATP34 27 795 456 46 308 22 173 1 9 356,159
ATP35 29 960 649 50 363 34 248 1 9 614,429
ATP36 28 537 244 30 209 20 91 1 9 129,262
ATP37 43 440 881 23 175 51 350 1 9 384,478
ATP38 40 731 358 41 289 19 140 1 9 259,070
ATP39 33 538 501 28 214 48 192 1 9 266,135
ATP40 56 683 138 34 270 6 54 1 9 63,945
ATP41 36 837 367 43 326 32 144 1 9 202,305
ATP42 59 167 291 8 65 21 114 1 9 32,589
ATP43 49 362 917 19 143 46 362 1 9 208,998
ATP44 39 223 496 11 88 29 193 1 9 70,940
ATP45 33 188 578 9 74 49 228 1 9 742205
ATP46 42 416 514 23 157 40 204 1 9 146,402
ATP47 43 393 554 25 156 32 215 1 9 144317
ATP48 34 931 254 47 355 18 99 1 9 165,428
ATP49 25 759 449 42 301 23 157 1 9 206,965
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Tight Example

H=2M
h=M+1
W =2M wp=M+1
Optimal Objective value: 1 d=4
pr=1
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Tight Example

LM — 4
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PM — 2
Feasible Width Pattern: (1)
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-
Tight Example

SM — 1
Feasible Width Pattern: (1)
Feasible Height Pattern: (1)
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