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Introduction
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Introduction Two-dimensional Two-staged Knapsack Problem

Two-dimensional Two-staged Knapsack Problem

Only one plate is given

H = 4

W = 4

d1 = 3
p1 = 7

h1 = 3

w1 = 1

d2 = 2
p2 = 10

h2 = 1

w2 = 2

d3 = 3
p3 = 2

h3 = 1

w3 = 1

n = 3, N = 8,
hi : height, wi : width,

pi : profit, di : demand

A General Two-dimensional Knapsack Problem

What is the maximum profit obtained by cutting small items from the
large plate?
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w3 = 1

n = 3, N = 8,
hi : height, wi : width,

pi : profit, di : demand

A Two-dimensional Two-staged Knapsack Problem

What is the maximum profit obtained by cutting small items from the
large plate using two-stage guillotine cuts?
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Introduction Two-dimensional Two-staged Knapsack Problem

Examples of Two-staged Cutting

Only one plate is given

H = 4

W = 4

d1 = 3
p1 = 7

h1 = 3

w1 = 1

d2 = 2
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w2 = 2

d3 = 3
p3 = 2
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w3 = 1

n = 3, N = 8,
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pi : profit, di : demand
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Introduction Two-dimensional Two-staged Knapsack Problem

Examples of Two-staged Cutting

Total Profit: 30 1 Left 1 Left 0 Left

강수호/Kang Suho (SNU) Seminar Nov 13, 2020 5 / 37



Introduction Two-dimensional Two-staged Knapsack Problem

Examples of Two-staged Cutting

First Stage Cuts Strips (Levels)
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Introduction Two-dimensional Two-staged Knapsack Problem

Examples of Two-staged Cutting

Second Stage Cuts
(Strip by strip)

강수호/Kang Suho (SNU) Seminar Nov 13, 2020 6 / 37



Introduction Two-dimensional Two-staged Knapsack Problem

Examples of Two-staged Cutting

Second Stage Cuts
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Introduction Two-dimensional Two-staged Knapsack Problem

Examples of Two-staged Cutting

Second Stage Cuts Trimming
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Introduction Two-dimensional Two-staged Knapsack Problem

Examples of Two-staged Cutting

Black: Strip Defining Items
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Introduction Two-dimensional Two-staged Knapsack Problem

Examples of Two-staged Cutting

1 Set strip-defining items first.

2 Locate the rest of the items (with lower heights) into each strip.

Second Stage Cuts Trimming
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Introduction Two-dimensional Two-staged Knapsack Problem

Two-dimensional Two-staged Knapsack Problem

Industrial guillotine cutters: efficiency and accuracy.

One of the restrictions is two-staged guillotine cutting.

Close relationship with the two-dimensional two-staged guillotine
cutting stock problem

Sharing the same two-staged guillotine cutting constraint
Knapsack problem: a slave problem

NP-hard in a strong sense

Reduction from the 3-PARTITION problem
Unanswered research issues exist yet.
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Introduction Literature Review

Literature Review

1 Integer programming models:

Gilmore and Gomory (1965) [12]: Strip Packing Model
Lodi and Monaci (2004) [18]: Level Packing Model

2 Exact Methods:

Hifi (2001) [13]: Dynamic Programming
Belov and Scheithauer (2006) [2]: Branch-and-cut-and-price Algorithm

3 Heuristics:

Hifi and M’Hallah (2006) [14]: Strip Generation Algorithm
Alvarez-Valdes et al. (2007) [1]: Path Relinking Methods.
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Introduction Literature Review

Contributions

1 Introduced new formulations for the problem based on concepts
proposed for the two-dimensional two-staged cutting stock problem

2 Proved the existence of polynomial-size formulation

3 Established a hierarchy of the LP-relaxation values

4 Developed some exact methods and tested them computationally.
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Integer Programming Models

Integer Programming Models
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Integer Programming Models Existing Models

Existing Models: (1) A Level Packing Model (LM)

Lodi and Monaci (2004) [18]

1 Determine which items will be used as strip-defining items.

2 Then, pack the rest of the items.
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Integer Programming Models Existing Models

Existing Models: (1) A Level Packing Model (LM)

LM : maximize
N∑
j=1

pβk

j∑
k=1

xjk

subject to

j∑
k=1

xjk ≤ 1, ∀j ∈ {1, . . . ,N}

N∑
j=k+1

wβj xjk ≤ (W − wβk )xkk , ∀k ∈ {1, . . . ,N}

N∑
k=1

hβk xkk ≤ H,

xjk ∈ {0, 1}, ∀k ∈ {1, . . . ,N}, ∀j ∈ {k, . . . ,N}.

The size of the formulation depends on the total numbers of items N,
not the number of item types n. (Pseudo-polynomial-size model)
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Integer Programming Models Existing Models

Modification of a Level Packing Model

We add the following set of valid inequalities to LM:

xjk ≤ xkk , ∀k ∈ {1, . . . ,N}, ∀j ∈ {k + 1, . . . ,N}.

(In a strip, each item should not be used more than the strip-defining
item.)

Improve the quality of the LP-relaxation value

Ease analyzing the relationship between other models.
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Integer Programming Models Existing Models

Existing Models: (2) A Strip Packing Model (PM)

Gilmore and Gomory (1965) [12]

1 Width patterns: the combination of items whose total width is below W .

2 One width pattern → One strip

3 Pack these width patterns with their total height below H.

Width Pattern (1, 1, 1),
Height: 3

Width Pattern (0, 2, 0),
Height: 2
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Integer Programming Models Existing Models

Existing Models: (2) A Strip Packing Model (PM)

PM : maximize
∑

q∈PW (d)

∑
i∈In

piaqixq

subject to
∑

q∈PW (d)

aqixq ≤ di , ∀i ∈ In,

∑
q∈PW (d)

ht(q)xq ≤ H,

xq ∈ Z+, ∀q ∈ PW (d).

Exponentially many width patterns exist. (Exponential-size model)
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Integer Programming Models Proposed Models

Proposed Models: (3) A Staged-pattern Model (SM)

1 Mrad et al. (2013) [22]
Propose the concept of height patterns at the two-staged
two-dimensional cutting stock problem

2 Height patterns: the combination of strip-defining items whose total
height is below H.

3 Choose adequate width patterns to complete the cutting.

Height Pattern (1, 0, 1)
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Proposed Models: (3) A Staged-pattern Model (SM)

1 Mrad et al. (2013) [22]
Propose the concept of height patterns at the two-staged
two-dimensional cutting stock problem

2 Height patterns: the combination of strip-defining items whose total
height is below H.

3 Choose adequate width patterns to complete the cutting.

Width Pattern (0, 0, 3), (2, 1, 0)

강수호/Kang Suho (SNU) Seminar Nov 13, 2020 16 / 37



Integer Programming Models Proposed Models

New Models: (3) A Staged-pattern Model (SM)

SM : maximize
∑

q∈PW (d)

∑
i∈In

piaqixq

subject to
∑

q∈PW (d)

aqixq ≤ di , ∀i ∈ In,

∑
r∈PH (d)

briyr ≥
∑

q∈PW (d),t(q)=i

xq , ∀i ∈ In,

∑
r∈PH (d)

yr ≤ 1,

xq ∈ Z+, ∀q ∈ PW (d),

yr ∈ Z+, ∀r ∈ PH(d).

Exponentially many width patterns and height patterns exist.
(Exponential-size model)
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Integer Programming Models Proposed Models

New Models: (4) An Arc-flow Model (AF)

1 Macedo et al. [20]:
Extend the concept of arc-flow model to the two-staged
two-dimensional cutting stock problem

2 Represent patterns as the flow of the certain graph

Height Pattern (1, 0, 1) Height Pattern Graph
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New Models: (4) An Arc-flow Model (AF)

1 Macedo et al. [20]:
Extend the concept of arc-flow model to the two-staged
two-dimensional cutting stock problem

2 Represent patterns as the flow of the certain graph

Width Pattern (0, 0, 3)
Width Pattern (2, 1, 0) Width Pattern Graphs
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Integer Programming Models Proposed Models

New Models: (4) An Arc-flow Model (AF)

AF : maximize
∑
j∈In

∑
(a,b,i)∈Aj

π
j
(a,b,i)

x
j
(a,b,i)

subject to
∑

(a,b,i)∈A0

x0
(a,b,i) −

∑
(b,c,k)∈A0

x0
(b,c,k) =


−1 if b = 0

0 if b = 1, . . . ,H − 1

1 if b = H

,

∑
(c,c+hj ,k)∈A0

x0
(c,c+hj ,k) − z j = 0, ∀j ∈ In,

∑
(d,e,i)∈Aj

x
j
(d,e,i)

−
∑

(e,f ,k)∈Aj
x
j
(e,f ,k)

=


−z j if e = 0

0 if e = 1, . . . ,W − 1

z j if e = W

, ∀j ∈ In,

∑
j∈In

∑
(f ,f +wi ,i)∈Aj

x
j
(f ,f +wi ,i)

≤ di , ∀i ∈ In,

All variables are nonnegative integers.

The size of the formulation depends on H and W .
(Pseudo-polynomial-size model)
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Theoretical Analysis

Theoretical Analysis
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Theoretical Analysis Existence of a Polynomial-size Model

Existence of a Polynomial-size Formulation

Eisenbrand and Shmonin [8] provides the upper bound on numbers of
nonzero components in the optimal solution in integer linear programming
problems.

Lemma 1

Let pmax and dmax indicate the maximum value of components in given p
and d , respectively. Then, there exists an optimal solution with at most
M = dlog2(n) + log2(pmax) + (n + 1)log2(dmax) + log2(H)e different types
of width patterns.

Split the integer variables into binary variables.

Transform the multiplication of binary variables into linear constraints
with a new binary variable.
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Theoretical Analysis Existence of a Polynomial-size Model

Existence of a Polynomial-size Formulation: POLY

maximize
n∑

i=1

M∑
m=1

D̂∑
k=1

D̂∑
l=1

2k+l−2pi sikml

subject to
M∑

m=1

D̂∑
k=1

D̂∑
l=1

2k+l−2sikml ≤ di , ∀i

n∑
i=1

D̂∑
k=1

2k−1wi q̄
m
ik ≤ W , ∀m,

M∑
m=1

D̂∑
l=1

Ĥ∑
t=1

2l+t−2rmlt ≤ H,

D̂∑
k=1

2k−1 q̄mik ≤ di z
m
i , ∀i,m,

q̄mik ≤ zmi , ∀i, k,m,

Ĥ∑
t=1

2t−1H̄mt ≥ hi z
m
i , ∀i,m,

sikml ≥ q̄mik + xml − 1, ∀i, k,m, l,

sikml ≤ q̄mik , ∀i, k,m, l,
sikml ≤ xml , ∀i, k,m, l,

rmlt ≥ xml + H̄mt − 1, ∀m, l, t,
rmlt ≤ xml , ∀m, l, t,

rmlt ≤ H̄mt , ∀m, l, t,

all variables s, q̄, H̄, r, z are binary.

Many logical constraints → weak upper bound

The first polynomial-sized model

O(n log2(dmax)2(n log2(dmax) + log2(pmax) + log2(H)))
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Theoretical Analysis Upper Bounds Comparison

Upper bounds provided by the LP-relaxations

Optimal objective value: z∗

Optimal objective value of the LP relaxation of model ”M”: zM

Theorem 1

z∗ ≤ zSM ≤ zPM ≤ zLM

Theorem 2

z∗ ≤ zSM ≤ zAF

LM Explicitly choose strip-defining items and then construct strips.

PM Packing predefined strips.

SM Packing strips with a predefined height pattern.

AF Use graphs to indicate which patterns are used.
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Theoretical Analysis Upper Bounds Comparison

Upper bounds provided by the LP-relaxations

Because of the knapsack structure, the following theorem holds:

Theorem 3

zLM ≤ 2zPM ≤ 4zSM.

Proof.

zLM ≤ 2zPM: Compensation for a partly used item in each strip

zPM ≤ 2zSM: Compensation for a partly used strip in a plate

Also, there exists a tight example of the above inequality.
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Because of the knapsack structure, the following theorem holds:

Theorem 3

zLM ≤ 2zPM ≤ 4zSM.

Proof.

zLM ≤ 2zPM: Compensation for a partly used item in each strip

zPM ≤ 2zSM: Compensation for a partly used strip in a plate

Also, there exists a tight example of the above inequality.

→ z∗ ≤ zSM ≤ zPM ≤ zLM ≤ 2zPM ≤ 4zSM
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Computational Analysis

Computational Analysis
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Computational Analysis Exact Methods

Exact Methods

LM: Branch-and-cut (Delayed constraint generation)

PM: Branch-and-price

SM: Branch-and-price

AF: Branch-and-bound

POLY: Branch-and-bound
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Computational Analysis Exact Methods

Delayed Constraint Generation of LM

We add the following set of valid inequalities to the original form of LM:

xjk ≤ xkk , ∀k ∈ {1, . . . ,N}, ∀j ∈ {k + 1, . . . ,N}.

The number of added inequalities: O(N2)

1 Discard the inequalities at the beginning.

2 At each node, solve the LP-relaxation and check whether violated
inequalities exist.

3 Add violated inequalities to the descendants of the node.
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Computational Analysis Exact Methods

Branch-and-price Algorithms of PM and SM

The number of pattern variables: O(2n).

1 Start with the basic pattern variables.

2 For each node, solve the LP-relaxation and check whether more
pattern variables are needed.

3 If needed, generate new pattern variables and repeat the procedure.
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Computational Analysis Computational Experiments

Computational Experiments

Solvers offered by Xpress 8.9 [9]

Intel(R) Core(TM) i7-4770 CPU @ 3.10GHz and 16GB of RAM

Time Limit: 600 s.

Benchmark instances proposed by Hifi and Roucairol (2001) [15]:

Small: 16 instances (40× 40− 130× 130)
Large: 20 instances (200× 200− 900× 900)

1 # of instances solved to optimality within the time limit

2 Gap between the lower bound and z∗ (Unsolved instances):

IP gap = (Optimal objective value)−(Best Lower Bound)
(Optimal objective value) × 100(%)

3 Gap between the upper bound and z∗

LP gap = (LP-relaxation value)−(Optimal objective value)
(Optimal objective value) × 100(%)
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Computational Analysis Computational Experiments

Results: Small Instances

Except for POLY, all models solved all instances to optimality

LM AF PM SM
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Figure: Average LP gaps.

zAF and zPM: incomparable

Far from zLM ≤ 2zPM ≤ 4zSM

LM: fastest

LP Gap of POLY: 517.5 (%)
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Computational Analysis Computational Experiments

Results: Large Instances
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Figure: The number of solved instances.

AF, LM: vulnerable to n and N

SM: somtimes LP-relaxation
solution → optimal solution

Effectiveness of height patterns
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Computational Analysis Computational Experiments

Results: Large Instances
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Figure: Average IP Gaps.

AF: No lower bounds obtained

Pattern-based models:

failed to prove optimality →
but provide a useful solution

quickly find a lower bound
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Computational Analysis Computational Experiments

Results: Large Instances
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Figure: Average LP gaps.

AF: decent upper bound

but requires a lot of time

SM: very tight upper bound

Similar to the case of small
instances
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Conclusion
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Conclusion

Conclusion and Further research

Introduced formulations and established their theoretical hierarchy

SM: competitive theoretical and computational performance

POLY: the first polynomial-size formulation of the problem

But its real usage is not recommended.

LM, AF: limitation in solving large instances.

zAF and zLM?

Polynomial-size with a decent upper bounds?
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Conclusion

The End

Thank you for listening.
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Small Instances

Name n W H wmin wmax hmin hmax dmin dmax OPT

2 10 40 70 9 31 7 35 1 3 2,535
2s 10 40 70 9 31 7 35 1 3 2,430
3 20 40 70 9 33 11 43 1 4 1,720

3s 20 40 70 9 33 11 43 1 4 2,599
A1s 20 50 60 9 33 11 43 1 4 2,950
A2s 20 60 60 12 33 14 42 1 4 3,423
A3 20 70 80 15 35 14 43 1 4 5,380
A4 20 90 70 9 33 11 43 1 3 5,885
A5 20 132 100 13 69 12 63 1 5 12,553

CHL1 30 132 100 13 69 12 63 1 5 8,360
CHL1s 30 132 100 13 69 12 63 1 5 13,036
CHL2 10 62 55 11 31 9 31 1 3 2,235

CHL2s 10 62 55 11 31 9 31 1 3 3,162
CHL5 10 20 20 1 20 2 14 1 3 363
CHL6 30 130 130 18 69 12 63 1 5 16,572
CHL7 35 130 130 19 57 18 54 1 5 16,728
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Large Instances

Name n W H wmin wmax hmin hmax dmin dmax OPT

ATP30 38 927 152 57 360 7 58 1 9 140,168
ATP31 51 856 964 44 331 50 380 1 9 820,260
ATP32 56 307 124 16 120 6 46 1 9 37,880
ATP33 44 241 983 15 90 52 390 1 9 235,580
ATP34 27 795 456 46 308 22 173 1 9 356,159
ATP35 29 960 649 50 363 34 248 1 9 614,429
ATP36 28 537 244 30 209 20 91 1 9 129,262
ATP37 43 440 881 23 175 51 350 1 9 384,478
ATP38 40 731 358 41 289 19 140 1 9 259,070
ATP39 33 538 501 28 214 48 192 1 9 266,135
ATP40 56 683 138 34 270 6 54 1 9 63,945
ATP41 36 837 367 43 326 32 144 1 9 202,305
ATP42 59 167 291 8 65 21 114 1 9 32,589
ATP43 49 362 917 19 143 46 362 1 9 208,998
ATP44 39 223 496 11 88 29 193 1 9 70,940
ATP45 33 188 578 9 74 49 228 1 9 74,205
ATP46 42 416 514 23 157 40 204 1 9 146,402
ATP47 43 393 554 25 156 32 215 1 9 144,317
ATP48 34 931 254 47 355 18 99 1 9 165,428
ATP49 25 759 449 42 301 23 157 1 9 206,965
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Tight Example

Optimal Objective value: 1

H = 2M

W = 2M

d1 = 4
p1 = 1

h1 = M + 1

w1 = M + 1
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Tight Example

LM → 4 PM → 2
Feasible Width Pattern: (1)
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Tight Example

SM → 1
Feasible Width Pattern: (1)
Feasible Height Pattern: (1)
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