Integer programming models and exact methods for the two-dimensional two-staged knapsack problem

강수호/Kang Suho

Seoul National Univ.

kangsuho0301@snu.ac.kr

Nov 13, 2020

1 - nan

Contents

Introduction

- Two-dimensional Two-staged Knapsack Problem
- Literature Review

Integer Programming Models

- Existing Models
- Proposed Models

Theoretical Analysis

- Existence of a Polynomial-size Model
- Upper Bounds Comparison
- Omputational Analysis
 - Exact Methods
 - Computational Experiments
- Onclusion

- E > - E >

Contents

Introduction

- Two-dimensional Two-staged Knapsack Problem
- Literature Review

Integer Programming Models

- Existing Models
- Proposed Models
- Theoretical Analysis
 - Existence of a Polynomial-size Model
 - Upper Bounds Comparison
- Computational Analysis
 - Exact Methods
 - Computational Experiments
- Onclusion

- E - - E -

Introduction

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖圖 釣ぬ⊙

A General Two-dimensional Knapsack Problem

What is the maximum profit obtained by cutting small items from the large plate?

A Two-dimensional Two-staged Knapsack Problem

What is the maximum profit obtained by cutting small items from the large plate using **two-stage guillotine cuts**?

<i>H</i> = 4		$n = 3, N = h_i$: height, p_i : profit,	= 8, <i>w_i</i> : width, <i>d_i</i> : demand
	$h_1 = 3$	$h_2 = 1$	$h_3 = 1$
VV = 4	$w_1 = 1$	$w_2 = 2$	$w_3 = 1$
Only one plate is given	$d_1 = 3 \\ p_1 = 7$	$d_2 = 2 \\ p_2 = 10$	$\begin{array}{l} d_3=3\\ p_3=2 \end{array}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Total Profit: 30 1 Left 1 Left 0 Left

三日 のへの

イロト イポト イヨト イヨト

三日 のへの

イロト イポト イヨト イヨト

Examples of Two-staged Cutting

ELE DOG

Image: A Image: A

< 行

三日 のへの

Image: A Image: A

EL SQA

< A

Black: Strip Defining Items

< A

ELE DOG

→ < Ξ → </p>

1 Set strip-defining items first.

2 Locate the rest of the items (with lower heights) into each strip.

ELE SQC

• • = • • = •

- Industrial guillotine cutters: efficiency and accuracy.
 - One of the restrictions is two-staged guillotine cutting.

1 - nan

- Industrial guillotine cutters: efficiency and accuracy.
 - One of the restrictions is two-staged guillotine cutting.
- Close relationship with the two-dimensional two-staged guillotine cutting stock problem
 - Sharing the same two-staged guillotine cutting constraint
 - Knapsack problem: a slave problem

- Industrial guillotine cutters: efficiency and accuracy.
 - One of the restrictions is two-staged guillotine cutting.
- Close relationship with the two-dimensional two-staged guillotine cutting stock problem
 - Sharing the same two-staged guillotine cutting constraint
 - Knapsack problem: a slave problem
- NP-hard in a strong sense
 - Reduction from the 3-PARTITION problem
 - Unanswered research issues exist yet.

Literature Review

Literature Review

Integer programming models:

- Gilmore and Gomory (1965) [12]: Strip Packing Model
- Lodi and Monaci (2004) [18]: Level Packing Model

ELE NOR

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

Literature Review

Literature Review

Integer programming models:

- Gilmore and Gomory (1965) [12]: Strip Packing Model
- Lodi and Monaci (2004) [18]: Level Packing Model

2 Exact Methods:

- Hifi (2001) [13]: Dynamic Programming
- Belov and Scheithauer (2006) [2]: Branch-and-cut-and-price Algorithm

• • = • • = •

Literature Review

Literature Review

Integer programming models:

- Gilmore and Gomory (1965) [12]: Strip Packing Model
- Lodi and Monaci (2004) [18]: Level Packing Model

2 Exact Methods:

- Hifi (2001) [13]: Dynamic Programming
- Belov and Scheithauer (2006) [2]: Branch-and-cut-and-price Algorithm

Heuristics:

- Hifi and M'Hallah (2006) [14]: Strip Generation Algorithm
- Alvarez-Valdes et al. (2007) [1]: Path Relinking Methods.

• • = • • = •

1 Introduced new formulations for the problem based on concepts proposed for the two-dimensional two-staged cutting stock problem

EL SQA

(日) (四) (日) (日) (日)

- 1 Introduced new formulations for the problem based on concepts proposed for the two-dimensional two-staged cutting stock problem
- 2 Proved the existence of polynomial-size formulation

- 1 Introduced new formulations for the problem based on concepts proposed for the two-dimensional two-staged cutting stock problem
- 2 Proved the existence of polynomial-size formulation
- 3 Established a hierarchy of the LP-relaxation values

- 1 Introduced new formulations for the problem based on concepts proposed for the two-dimensional two-staged cutting stock problem
- 2 Proved the existence of polynomial-size formulation
- 3 Established a hierarchy of the LP-relaxation values
- 4 Developed some exact methods and tested them computationally.

Integer Programming Models

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Existing Models: (1) A Level Packing Model (LM)

- Lodi and Monaci (2004) [18]
- 1 Determine which items will be used as strip-defining items.
- 2 Then, pack the rest of the items.

Existing Models: (1) A Level Packing Model (LM)

- Lodi and Monaci (2004) [18]
- 1 Determine which items will be used as strip-defining items.
- 2 Then, pack the rest of the items.

Existing Models: (1) A Level Packing Model (LM)

• The size of the formulation depends on the total numbers of items *N*, not the number of item types *n*. (Pseudo-polynomial-size model)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Modification of a Level Packing Model

We add the following set of valid inequalities to LM:

$$x_{jk} \leq x_{kk}, \quad \forall k \in \{1, \ldots, N\}, \quad \forall j \in \{k+1, \ldots, N\}.$$

(In a strip, each item should not be used more than the strip-defining item.)

- Improve the quality of the LP-relaxation value
- Ease analyzing the relationship between other models.

Existing Models: (2) A Strip Packing Model (PM)

- Gilmore and Gomory (1965) [12]
- 1 Width patterns: the combination of items whose total width is below W.
- 2 One width pattern \rightarrow One strip
- 3 Pack these width patterns with their total height below H.

JOC ELE

• • = • • = •

Existing Models: (2) A Strip Packing Model (PM)

- Gilmore and Gomory (1965) [12]
- 1 Width patterns: the combination of items whose total width is below W.
- 2 One width pattern \rightarrow One strip
- 3 Pack these width patterns with their total height below H.

Existing Models: (2) A Strip Packing Model (PM)

$$\begin{array}{lll} \mathsf{PM}: & \mathsf{maximize} & \displaystyle \sum_{q \in P_W(d)} \sum_{i \in I_n} p_i a_{qi} x_q \\ & \mathsf{subject to} & \displaystyle \sum_{q \in P_W(d)} a_{qi} x_q \leq d_i, \quad \forall i \in I_n, \\ & \displaystyle \sum_{q \in P_W(d)} h_{t(q)} x_q \leq H, \\ & \displaystyle x_q \in \mathbf{Z}_+, \quad \forall q \in P_W(d). \end{array}$$

• Exponentially many width patterns exist. (Exponential-size model)

Proposed Models: (3) A Staged-pattern Model (SM)

- 1 Mrad et al. (2013) [22]
 - Propose the concept of height patterns at the two-staged two-dimensional cutting stock problem
- 2 Height patterns: the combination of strip-defining items whose total height is below H.
- 3 Choose adequate width patterns to complete the cutting.

Proposed Models: (3) A Staged-pattern Model (SM)

- 1 Mrad et al. (2013) [22]
 - Propose the concept of height patterns at the two-staged two-dimensional cutting stock problem
- 2 Height patterns: the combination of strip-defining items whose total height is below H.
- 3 Choose adequate width patterns to complete the cutting.

New Models: (3) A Staged-pattern Model (SM)

$$\begin{array}{lll} \mathsf{SM}: & \mathsf{maximize} & \displaystyle\sum_{q \in P_W(d)} \displaystyle\sum_{i \in I_n} p_i a_{qi} x_q \\ & \mathsf{subject to} & \displaystyle\sum_{q \in P_W(d)} a_{qi} x_q \leq d_i, & \forall i \in I_n, \\ & \displaystyle\sum_{r \in P_H(d)} b_{ri} y_r \geq \displaystyle\sum_{q \in P_W(d), t(q) = i} x_q, & \forall i \in I_n, \\ & \displaystyle\sum_{r \in P_H(d)} y_r \leq 1, \\ & \displaystyle x_q \in \mathbf{Z}_+, \quad \forall q \in P_W(d), \\ & \displaystyle y_r \in \mathbf{Z}_+, \quad \forall r \in P_H(d). \end{array}$$

• Exponentially many width patterns and height patterns exist. (Exponential-size model)

New Models: (4) An Arc-flow Model (AF)

- Macedo et al. [20]: 1
 - Extend the concept of arc-flow model to the two-staged two-dimensional cutting stock problem
- Represent patterns as the flow of the certain graph 2

New Models: (4) An Arc-flow Model (AF)

- 1 Macedo *et al.* [20]:
 - Extend the concept of arc-flow model to the two-staged two-dimensional cutting stock problem
- 2 Represent patterns as the flow of the certain graph

Width Pattern (0, 0, 3)Width Pattern (2, 1, 0)

Width Pattern Graphs

000 EIE 4E + 4E + 4

New Models: (4) An Arc-flow Model (AF)

$$\begin{aligned} \mathsf{AF}: & \text{maximize} \quad \sum_{j \in I_n} \sum_{(a,b,i) \in \mathcal{A}^j} \pi^j_{(a,b,i)} x^j_{(a,b,i)} \\ & \text{subject to} \quad \sum_{(a,b,i) \in \mathcal{A}^j} x^0_{(a,b,i)} - \sum_{(b,c,k) \in \mathcal{A}^0} x^0_{(b,c,k)} = \begin{cases} -1 & \text{if } b = 0 \\ 0 & \text{if } b = 1, \dots, H-1 \\ 1 & \text{if } b = H \end{cases} \\ & \sum_{(c,c+h_j,k) \in \mathcal{A}^0} x^0_{(c,c+h_j,k)} - z^j = 0, \quad \forall j \in I_n, \\ & \sum_{(d,e,i) \in \mathcal{A}^j} x^j_{(d,e,i)} - \sum_{(e,f,k) \in \mathcal{A}^j} x^j_{(e,f,k)} \\ & = \begin{cases} -z^j & \text{if } e = 0 \\ 0 & \text{if } e = 1, \dots, W-1 \\ z^j & \text{if } e = W \end{cases} \\ & \sum_{j \in I_n} \sum_{(f,f+w_i,i) \in \mathcal{A}^j} x^j_{(f,f+w_i,i)} \leq d_i, \quad \forall i \in I_n, \end{cases} \end{aligned}$$

All variables are nonnegative integers.

The size of the formulation depends on H and W.
 (Pseudo-polynomial-size model)

강수호/Kang Suho (SNU)

Theoretical Analysis

E 990

イロト イヨト イヨト イヨト

Existence of a Polynomial-size Formulation

Eisenbrand and Shmonin [8] provides the upper bound on numbers of nonzero components in the optimal solution in integer linear programming problems.

Lemma 1

Let p_{max} and d_{max} indicate the maximum value of components in given p and d, respectively. Then, there exists an optimal solution with at most $M = \lceil log_2(n) + log_2(p_{max}) + (n+1)log_2(d_{max}) + log_2(H) \rceil$ different types of width patterns.

- Split the integer variables into binary variables.
- Transform the multiplication of binary variables into linear constraints with a new binary variable.

< ロ > < 同 > < 三 > < 三 > < 三 > < 三 > < 回 > < ○ < ○ </p>

Existence of a Polynomial-size Formulation: POLY

maximize	$\sum_{i=1}^{n} \sum_{m=1}^{M} \sum_{k=1}^{\hat{D}} \sum_{l=1}^{\hat{D}} 2^{k+l-2} p_{i} s_{ikml}$
subject to	$\sum_{m=1}^{M}\sum_{k=1}^{\hat{D}}\sum_{l=1}^{\hat{D}}2^{k+l-2}s_{ikml}\leq d_{i},\forall i$
	$\sum_{i=1}^{n}\sum_{k=1}^{\hat{D}}2^{k-1}w_{i}\bar{q}_{ik}^{m}\leq W,\forall m,$
	$\sum_{m=1}^{M} \sum_{l=1}^{\hat{D}} \sum_{t=1}^{\hat{H}} 2^{l+t-2} r_{mlt} \le H,$
	$\sum_{k=1}^{\hat{D}} 2^{k-1} \bar{q}_{ik}^m \leq d_i z_i^m, \forall i, m,$

$$\begin{split} \bar{q}_{ik}^{m} &\leq z_{i}^{m}, \quad \forall i, k, m, \\ \sum_{t=1}^{\hat{H}} 2^{t-1} \bar{H}_{mt} &\geq h_{i} z_{i}^{m}, \quad \forall i, m, \\ \bar{s}_{ikml} &\geq \bar{q}_{ik}^{m} + x_{ml} - 1, \quad \forall i, k, m, l, \\ \bar{s}_{ikml} &\leq \bar{q}_{ik}^{m}, \quad \forall i, k, m, l, \\ \bar{s}_{ikml} &\leq x_{ml}, \quad \forall i, k, m, l, \\ r_{mlt} &\geq x_{ml} + \bar{H}_{mt} - 1, \quad \forall m, l, t, \\ r_{mlt} &\leq x_{ml}, \quad \forall m, l, t, \\ r_{mlt} &\leq \bar{H}_{mt}, \quad \forall m, l, t, \\ all variables s, \bar{q}, \bar{H}, r, z \text{ are binary.} \end{split}$$

- $\bullet \ {\sf Many \ logical \ constraints} \to {\sf weak \ upper \ bound}$
- The first polynomial-sized model
 - $\mathcal{O}(n \log_2(d_{\max})^2(n \log_2(d_{\max}) + \log_2(p_{\max}) + \log_2(H)))$

Optimal objective value: z^* Optimal objective value of the LP relaxation of model "M": z^M

Theorem 1 $z^* \le z^{\text{SM}} \le z^{\text{PM}} \le z^{\text{LM}}$

Theorem 2 $z^* \le z^{SM} \le z^{AF}$

Optimal objective value: z^* Optimal objective value of the LP relaxation of model "M": z^M

Theorem 1 $z^* \leq z^{SM} \leq z^{PM} \leq z^{LM}$ Theorem 2 $z^* \leq z^{SM} \leq z^{AF}$

LM Explicitly choose strip-defining items and then construct strips.

Optimal objective value: z^* Optimal objective value of the LP relaxation of model "M": z^M

Theorem 1 $z^* \leq z^{SM} \leq z^{PM} \leq z^{LM}$ Theorem 2 $z^* \leq z^{SM} \leq z^{AF}$

LM Explicitly choose strip-defining items and then construct strips.

PM Packing predefined strips.

Optimal objective value: z^* Optimal objective value of the LP relaxation of model "M": z^M

Theorem 1 $z^* \leq z^{SM} \leq z^{PM} \leq z^{LM}$ Theorem 2 $z^* \leq z^{SM} \leq z^{AF}$

LM Explicitly choose strip-defining items and then construct strips.

PM Packing predefined strips.

SM Packing strips with a predefined height pattern.

Optimal objective value: z^* Optimal objective value of the LP relaxation of model "M": z^M

Theorem 1 $z^* \leq z^{SM} \leq z^{PM} \leq z^{LM}$ Theorem 2 $z^* \leq z^{SM} \leq z^{AF}$

LM Explicitly choose strip-defining items and then construct strips.

PM Packing predefined strips.

SM Packing strips with a predefined height pattern.

AF Use graphs to indicate which patterns are used.

Because of the knapsack structure, the following theorem holds:

Theorem 3 $z^{LM} \le 2z^{PM} \le 4z^{SM}$.

Proof.

 $z^{LM} \le 2z^{PM}$: Compensation for a partly used item in each strip $z^{PM} \le 2z^{SM}$: Compensation for a partly used strip in a plate

Also, there exists a tight example of the above inequality.

< ロ > < 同 > < 三 > < 三 > < 三 > < 三 > < 回 > < ○ < ○ </p>

Because of the knapsack structure, the following theorem holds:

Theorem 3 $z^{LM} \le 2z^{PM} \le 4z^{SM}$.

Proof.

 $z^{LM} \le 2z^{PM}$: Compensation for a partly used item in each strip $z^{PM} \le 2z^{SM}$: Compensation for a partly used strip in a plate

Also, there exists a tight example of the above inequality.

$$ightarrow z^* \leq z^{\sf SM} \leq z^{\sf PM} \leq z^{\sf LM} \leq 2z^{\sf PM} \leq 4z^{\sf SM}$$

Computational Analysis

イロト イヨト イヨト イヨ

▶ ΞΙΞ - • ○ ٩ ○

Exact Methods

• LM: Branch-and-cut (Delayed constraint generation)

ELE NOR

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

Exact Methods

- LM: Branch-and-cut (Delayed constraint generation)
- PM: Branch-and-price
- SM: Branch-and-price

EL SQA

Exact Methods

- LM: Branch-and-cut (Delayed constraint generation)
- PM: Branch-and-price
- SM: Branch-and-price
- AF: Branch-and-bound
- POLY: Branch-and-bound

EL SQA

We add the following set of valid inequalities to the original form of LM:

$$x_{jk} \leq x_{kk}, \quad \forall k \in \{1, \dots, N\}, \quad \forall j \in \{k+1, \dots, N\}.$$

• The number of added inequalities: $\mathcal{O}(N^2)$

• • = • • =

ELE NOR

We add the following set of valid inequalities to the original form of LM:

$$x_{jk} \leq x_{kk}, \quad \forall k \in \{1, \dots, N\}, \quad \forall j \in \{k+1, \dots, N\}.$$

• The number of added inequalities: $\mathcal{O}(N^2)$

1 Discard the inequalities at the beginning.

We add the following set of valid inequalities to the original form of LM:

$$x_{jk} \leq x_{kk}, \quad \forall k \in \{1, \dots, N\}, \quad \forall j \in \{k+1, \dots, N\}.$$

• The number of added inequalities: $\mathcal{O}(N^2)$

- 1 Discard the inequalities at the beginning.
- 2 At each node, solve the LP-relaxation and check whether violated inequalities exist.

ELE NOR

• • = • • = •

We add the following set of valid inequalities to the original form of LM:

$$x_{jk} \leq x_{kk}, \quad \forall k \in \{1, \dots, N\}, \quad \forall j \in \{k+1, \dots, N\}.$$

• The number of added inequalities: $\mathcal{O}(N^2)$

- 1 Discard the inequalities at the beginning.
- 2 At each node, solve the LP-relaxation and check whether violated inequalities exist.
- 3 Add violated inequalities to the descendants of the node.

ELE DOG

• The number of pattern variables: $\mathcal{O}(2^n)$.

三日 のへの

(日)

- The number of pattern variables: $\mathcal{O}(2^n)$.
- $1\,$ Start with the basic pattern variables.

EL SQA

• • = • • =

- The number of pattern variables: $\mathcal{O}(2^n)$.
- 1 Start with the basic pattern variables.
- 2 For each node, solve the LP-relaxation and check whether more pattern variables are needed.

EL SQA

A B + A B +

- The number of pattern variables: $\mathcal{O}(2^n)$.
- 1 Start with the basic pattern variables.
- 2 For each node, solve the LP-relaxation and check whether more pattern variables are needed.
- 3 If needed, generate new pattern variables and repeat the procedure.

ELE NOR

- Solvers offered by Xpress 8.9 [9]
- Intel(R) Core(TM) i7-4770 CPU @ 3.10GHz and 16GB of RAM
- Time Limit: 600 s.
- Benchmark instances proposed by Hifi and Roucairol (2001) [15]:
 - Small: 16 instances $(40 \times 40 130 \times 130)$
 - Large: 20 instances (200 × 200 − 900 × 900)

A = A = A = A = A = A = A

- Solvers offered by Xpress 8.9 [9]
- Intel(R) Core(TM) i7-4770 CPU @ 3.10GHz and 16GB of RAM
- Time Limit: 600 s.
- Benchmark instances proposed by Hifi and Roucairol (2001) [15]:
 - Small: 16 instances $(40 \times 40 130 \times 130)$
 - Large: 20 instances (200 \times 200 900 \times 900)
- 1~# of instances solved to optimality within the time limit

- Solvers offered by Xpress 8.9 [9]
- Intel(R) Core(TM) i7-4770 CPU @ 3.10GHz and 16GB of RAM
- Time Limit: 600 s.
- Benchmark instances proposed by Hifi and Roucairol (2001) [15]:
 - Small: 16 instances $(40 \times 40 130 \times 130)$
 - Large: 20 instances (200 \times 200 900 \times 900)
- 1~# of instances solved to optimality within the time limit
- 2 Gap between the lower bound and z^* (Unsolved instances):

A = A = A = A = A = A = A

- Solvers offered by Xpress 8.9 [9]
- Intel(R) Core(TM) i7-4770 CPU @ 3.10GHz and 16GB of RAM
- Time Limit: 600 s.
- Benchmark instances proposed by Hifi and Roucairol (2001) [15]:
 - Small: 16 instances (40 × 40 − 130 × 130)
 - Large: 20 instances (200 × 200 − 900 × 900)
- 1~# of instances solved to optimality within the time limit
- 2 Gap between the lower bound and z^* (Unsolved instances):

• IP gap =
$$\frac{\text{(Optimal objective value)} - (\text{Best Lower Bound})}{(\text{Optimal objective value})} \times 100(\%)$$

- Solvers offered by Xpress 8.9 [9]
- Intel(R) Core(TM) i7-4770 CPU @ 3.10GHz and 16GB of RAM
- Time Limit: 600 s.
- Benchmark instances proposed by Hifi and Roucairol (2001) [15]:
 - Small: 16 instances (40 × 40 − 130 × 130)
 - Large: 20 instances (200 × 200 − 900 × 900)
- 1~# of instances solved to optimality within the time limit
- 2 Gap between the lower bound and z^* (Unsolved instances):

• IP gap =
$$\frac{(\text{Optimal objective value}) - (\text{Best Lower Bound})}{(\text{Optimal objective value})} \times 100(\%)$$

3 Gap between the upper bound and z^*

- Solvers offered by Xpress 8.9 [9]
- Intel(R) Core(TM) i7-4770 CPU @ 3.10GHz and 16GB of RAM
- Time Limit: 600 s.
- Benchmark instances proposed by Hifi and Roucairol (2001) [15]:
 - Small: 16 instances $(40 \times 40 130 \times 130)$
 - Large: 20 instances (200 \times 200 900 \times 900)
- 1~# of instances solved to optimality within the time limit
- 2 Gap between the lower bound and z^* (Unsolved instances):

• IP gap =
$$\frac{\text{(Optimal objective value)} - (\text{Best Lower Bound})}{(\text{Optimal objective value})} \times 100(\%)$$

- 3 Gap between the upper bound and z^*
 - LP gap = $\frac{(\text{LP-relaxation value}) (\text{Optimal objective value})}{(\text{Optimal objective value})} \times 100(\%)$

(4回) (三) (三) (三) (三) (○) (○)

• Except for POLY, all models solved all instances to optimality

Figure: Average LP gaps.

-

• Except for POLY, all models solved all instances to optimality

• Except for POLY, all models solved all instances to optimality

Figure: Average LP gaps.

- z^{AF} and z^{PM} : incomparable
- Far from $z^{LM} \leq 2z^{PM} \leq 4z^{SM}$

• Except for POLY, all models solved all instances to optimality

Figure: Average LP gaps.

- z^{AF} and z^{PM} : incomparable
- Far from $z^{LM} \leq 2z^{PM} \leq 4z^{SM}$
- LM: fastest

• Except for POLY, all models solved all instances to optimality

Figure: Average LP gaps.

- z^{AF} and z^{PM} : incomparable
- Far from $z^{LM} \leq 2z^{PM} \leq 4z^{SM}$
- LM: fastest
- LP Gap of POLY: 517.5 (%)

Results: Large Instances

Figure: The number of solved instances.

• AF, LM: vulnerable to n and N

Figure: The number of solved instances.

• AF, LM: vulnerable to n and N

 SM: somtimes LP-relaxation solution → optimal solution

Figure: The number of solved instances.

- AF, LM: vulnerable to n and N
- SM: somtimes LP-relaxation solution → optimal solution
- Effectiveness of height patterns

Figure: Average IP Gaps.

AF: No lower bounds obtained

Figure: Average IP Gaps.

- AF: No lower bounds obtained
- Pattern-based models:
 - failed to prove optimality \rightarrow but provide a useful solution

Figure: Average IP Gaps.

- AF: No lower bounds obtained
- Pattern-based models:
 - failed to prove optimality \rightarrow but provide a useful solution
 - quickly find a lower bound

Figure: Average LP gaps.

• AF: decent upper bound

Figure: Average LP gaps.

• AF: decent upper bound

• but requires a lot of time

Figure: Average LP gaps.

• AF: decent upper bound

- but requires a lot of time
- SM: very tight upper bound

Figure: Average LP gaps.

- AF: decent upper bound
 - but requires a lot of time
- SM: very tight upper bound
- Similar to the case of small instances

Conclusion

・ロト < 団ト < ヨト < ヨト < ヨト < ロト

• Introduced formulations and established their theoretical hierarchy

.

ELE DOG

- Introduced formulations and established their theoretical hierarchy
- SM: competitive theoretical and computational performance

- Introduced formulations and established their theoretical hierarchy
- SM: competitive theoretical and computational performance
- POLY: the first polynomial-size formulation of the problem

- Introduced formulations and established their theoretical hierarchy
- SM: competitive theoretical and computational performance
- POLY: the first polynomial-size formulation of the problem
 But its real usage is not recommended.

- Introduced formulations and established their theoretical hierarchy
- SM: competitive theoretical and computational performance
- POLY: the first polynomial-size formulation of the problem
 But its real usage is not recommended.
- LM, AF: limitation in solving large instances.

- Introduced formulations and established their theoretical hierarchy
- SM: competitive theoretical and computational performance
- POLY: the first polynomial-size formulation of the problem
 But its real usage is not recommended.
- LM, AF: limitation in solving large instances.
- z^{AF} and z^{LM}?

- Introduced formulations and established their theoretical hierarchy
- SM: competitive theoretical and computational performance
- POLY: the first polynomial-size formulation of the problem
 But its real usage is not recommended.
- LM, AF: limitation in solving large instances.
- z^{AF} and z^{LM}?
- Polynomial-size with a decent upper bounds?

References I

R. Alvarez-Valdes, R. Martí, J. M. Tamarit, and A. Parajón. Grasp and path relinking for the two-dimensional two-stage cutting-stock problem. *INFORMS Journal on Computing*, 19(2):261–272, 2007.

G. Belov and G. Scheithauer.

A branch-and-cut-and-price algorithm for one-dimensional stock cutting and two-dimensional two-stage cutting.

European journal of operational research, 171(1):85–106, 2006.

J. O. Berkey and P. Y. Wang.

Two-dimensional finite bin-packing algorithms.

Journal of the operational research society, 38(5):423–429, 1987.

V. M. Bezerra, A. A. Leao, J. F. Oliveira, and M. O. Santos.

Models for the two-dimensional level strip packing problem-a review and a computational evaluation.

Journal of the Operational Research Society, 71(4):606–627, 2020.

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨヨ ののべ

References II

A. Caprara and M. Monaci.

On the two-dimensional knapsack problem. Operations Research Letters, 32(1):5–14, 2004.

M. Conforti, G. Cornuéjols, G. Zambelli, et al. *Integer programming*, volume 271. Springer, 2014.

M. Dolatabadi, A. Lodi, and M. Monaci.

Exact algorithms for the two-dimensional guillotine knapsack. *Computers & Operations Research*, 39(1):48–53, 2012.

F. Eisenbrand and G. Shmonin.

Carathéodory bounds for integer cones.

Operations Research Letters, 34(5):564–568, 2006.

https://www.fico.com/.

ELE SQC

(3)

References III

F. Furini and E. Malaguti.

Models for the two-dimensional two-stage cutting stock problem with multiple stock size.

Computers & Operations Research, 40(8):1953–1962, 2013.

M. R. Garey and D. S. Johnson.

Computers and intractability, volume 174. freeman San Francisco, 1979.

P. Gilmore and R. E. Gomory.

Multistage cutting stock problems of two and more dimensions.

Operations research, 13(1):94–120, 1965.

M. Hifi.

Exact algorithms for large-scale unconstrained two and three staged cutting problems.

Computational Optimization and Applications, 18(1):63-88, 2001.

JOC ELE

イロト イボト イヨト イヨト

References IV

M. Hifi and R. M'Hallah.

Strip generation algorithms for constrained two-dimensional two-staged cutting problems.

European Journal of Operational Research, 172(2):515-527, 2006.

M. Hifi and C. Roucairol.

Approximate and exact algorithms for constrained (un) weighted two-dimensional two-staged cutting stock problems.

Journal of combinatorial optimization, 5(4):465-494, 2001.

H. Kellerer, U. Pferschy, and D. Pisinger.

Knapsack Problems.

Springer, Berlin, Germany, 2004.

Comparative analysis of pattern-based models for the two-dimensional two-stage guillotine cutting stock problem.

Computers & Operations Research, 109:159–169, 2019.

ELE NOR

References V

A. Lodi and M. Monaci.

Integer linear programming models for 2-staged two-dimensional knapsack problems.

Mathematical Programming, 94(2-3):257–278, 2003.

M. E. Lübbecke and J. Desrosiers.

Selected topics in column generation.

Operations research, 53(6):1007–1023, 2005.

R. Macedo, C. Alves, and J. V. De Carvalho.

Arc-flow model for the two-dimensional guillotine cutting stock problem. *Computers & Operations Research*, 37(6):991–1001, 2010.

J. Martinovic, G. Scheithauer, and J. V. de Carvalho.

A comparative study of the arcflow model and the one-cut model for one-dimensional cutting stock problems.

European Journal of Operational Research, 266(2):458–471, 2018.

ELE NOR

< □ > < 同 > < 回 > < 回 > < 回 >

References VI

M. Mrad, I. Meftahi, and M. Haouari.

A branch-and-price algorithm for the two-stage guillotine cutting stock problem. *Journal of the Operational Research Society*, 64(5):629–637, 2013.

E. Silva, F. Alvelos, and J. V. de Carvalho.

An integer programming model for two-and three-stage two-dimensional cutting stock problems.

European Journal of Operational Research, 205(3):699-708, 2010.

A. Steinberg.

A strip-packing algorithm with absolute performance bound 2. *SIAM Journal on Computing*, 26(2):401–409, 1997.

G. Wäscher, H. Haußner, and H. Schumann.

An improved typology of cutting and packing problems.

European journal of operational research, 183(3):1109–1130, 2007.

ELE NOR

< ロ > < 同 > < 回 > < 回 > < 回 > <

The End

Thank you for listening.

Small Instances

Name	n	W	Н	Wmin	W _{max}	h _{min}	h_{\max}	d _{min}	d_{\max}	OPT
2	10	40	70	9	31	7	35	1	3	2,535
2s	10	40	70	9	31	7	35	1	3	2,430
3	20	40	70	9	33	11	43	1	4	1,720
3s	20	40	70	9	33	11	43	1	4	2,599
A1s	20	50	60	9	33	11	43	1	4	2,950
A2s	20	60	60	12	33	14	42	1	4	3,423
A3	20	70	80	15	35	14	43	1	4	5,380
A4	20	90	70	9	33	11	43	1	3	5,885
A5	20	132	100	13	69	12	63	1	5	12,553
CHL1	30	132	100	13	69	12	63	1	5	8,360
CHL1s	30	132	100	13	69	12	63	1	5	13,036
CHL2	10	62	55	11	31	9	31	1	3	2,235
CHL2s	10	62	55	11	31	9	31	1	3	3,162
CHL5	10	20	20	1	20	2	14	1	3	363
CHL6	30	130	130	18	69	12	63	1	5	16,572
CHL7	35	130	130	19	57	18	54	1	5	16,728

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ◆□ ● ◆ □ ● ◆ ○ ●

Large Instances

Name	n	W	Н	Wmin	w _{max}	h _{min}	h_{\max}	d _{min}	d_{\max}	OPT
ATP30	38	927	152	57	360	7	58	1	9	140,168
ATP31	51	856	964	44	331	50	380	1	9	820,260
ATP32	56	307	124	16	120	6	46	1	9	37,880
ATP33	44	241	983	15	90	52	390	1	9	235,580
ATP34	27	795	456	46	308	22	173	1	9	356,159
ATP35	29	960	649	50	363	34	248	1	9	614,429
ATP36	28	537	244	30	209	20	91	1	9	129,262
ATP37	43	440	881	23	175	51	350	1	9	384,478
ATP38	40	731	358	41	289	19	140	1	9	259,070
ATP39	33	538	501	28	214	48	192	1	9	266,135
ATP40	56	683	138	34	270	6	54	1	9	63,945
ATP41	36	837	367	43	326	32	144	1	9	202,305
ATP42	59	167	291	8	65	21	114	1	9	32,589
ATP43	49	362	917	19	143	46	362	1	9	208,998
ATP44	39	223	496	11	88	29	193	1	9	70,940
ATP45	33	188	578	9	74	49	228	1	9	74,205
ATP46	42	416	514	23	157	40	204	1	9	146,402
ATP47	43	393	554	25	156	32	215	1	9	144,317
ATP48	34	931	254	47	355	18	99	1	9	165,428
ATP49	25	759	449	42	301	23	157	1	9	206,965

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ◆□ ● ◆ □ ● ◆ ○ ●

Tight Example

H = 2M $h_1 = M + 1$ $w_1 = M + 1$ W = 2MOptimal Objective value: 1 $d_1 = 4$ $p_1 = 1$

Tight Example

 $\text{LM} \rightarrow 4$

 $\label{eq:PM} \begin{array}{l} \mathsf{PM} \to 2 \\ \mathsf{Feasible Width Pattern:} \ (1) \end{array}$

Tight Example

 $\begin{array}{l} \mathsf{SM} \to 1 \\ \mathsf{Feasible} \mbox{ Width Pattern: (1)} \\ \mathsf{Feasible} \mbox{ Height Pattern: (1)} \end{array}$