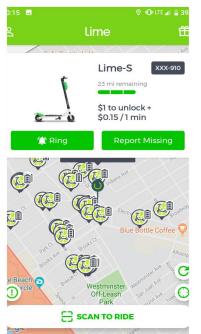

Strategic bundling approach for gig economy operation of electric scooter recharging

발표자: Minjeong Kim 지도 교수: Ilkyeong Moon

Supply Chain Management Lab, Department of Industrial Engineering, Seoul National University

November 13, 2020



1. Introduction

Electric scooter sharing service

First mile-last mile transportation



 \rightarrow **Dockless**: No designated station for pick-up and return

 \rightarrow Convenient for short-distance travel connecting transportation hubs

Increase in usage due to COVID-19

 \rightarrow The number of usage has increased by more than **4.3 times** compared to the second half of last year

Mobility as a service(MaaS) for daily, non-face-to-face, micro transportation

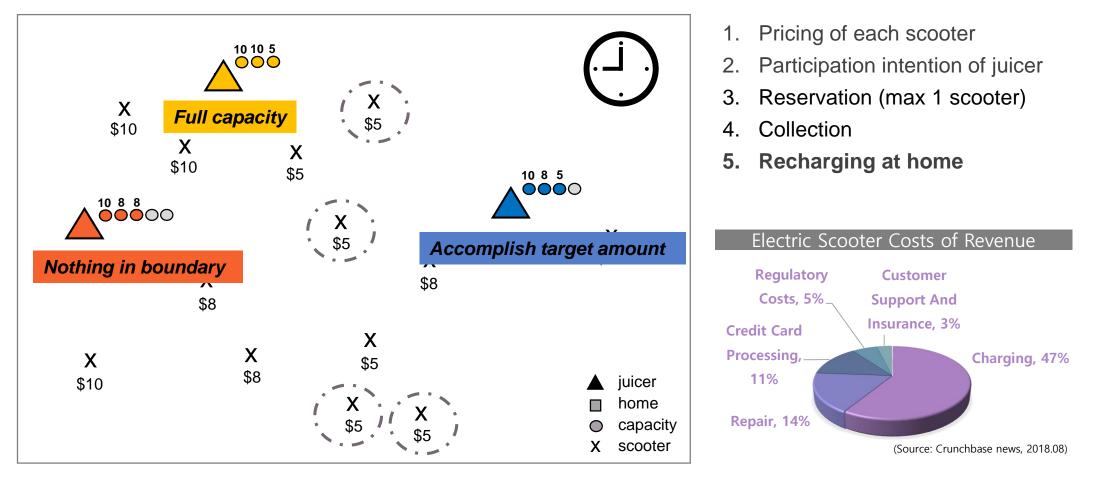
Motivation Introduction(2/5)

Gig economy

 \rightarrow Free market system where organizations and independent workers engage in temporary or short-term work arrangements via platform

- ✓ Self-regulated
- ✓ Contingent
- ✓ Individual stakeholders

Lime juicer


→ Network of independent contractors who collect and charge electric kickboards every night and redeploy them in the morning.

\rightarrow Collection Price

	USA	KOREA
Price	\$5~\$12 (\$8 avg)	₩3,000~₩4,000
Max. Price	\$20	₩6,000

Juicer System Introduction(3/5)

Lime's charging strategy with juicer

Collection rate: 9/13

Literature Review

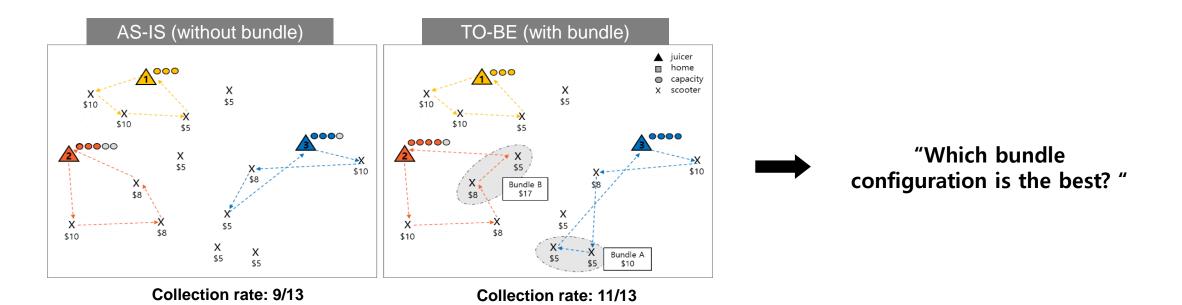
Introduction(4/5)

E-scooter recharging operation

- Hub station design for e-scooters
 Goshtasb (2018). San Jose State University Graduate Research
 - Violates the dockless system
- E-scooter assignment problem
 Masoud et al. (2019) : *IEEE Access* 7
 - → Allow company's intervention to chargers
- Stochastic model for e-scooter systems
 - Pender et al (2020). Cornell University
 - → Different charging method

No research on efficient management of gig economy-based operation of charging e-scooters

Combinatorial auction bundling


- Bidding strategy of combinatorial auction
 An et al. (2005). Journal of Revenue and Pricing Management
- Scale and density discount of package
 Olivares et al. (2012) : Management Science
- Transportation service procurement
 Song et al (2020). Transportation Research Record

Valuation of bidders toward package of items from cost synergies

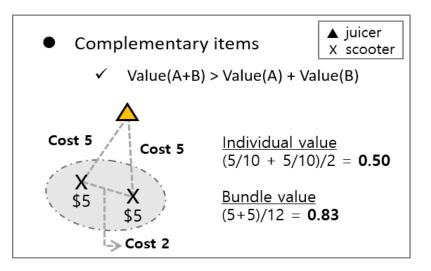
Bundling strategy to increase collection rate of scooters

In this thesis...

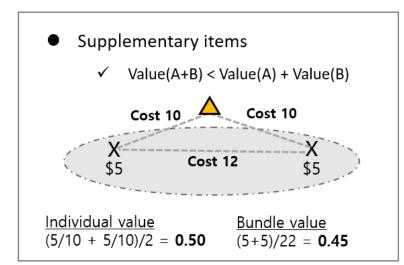
- \rightarrow Provide bundle of scooters as an alternative to collect
- \rightarrow Promote juicers' collection activity when a company cannot directly manage workers

Objective

Create optimization-based bundling strategy to increase collection rate of scooters


2. Problem Statement

Combinatorial auction


 \rightarrow participants can place bids on combinations of items rather than individual items

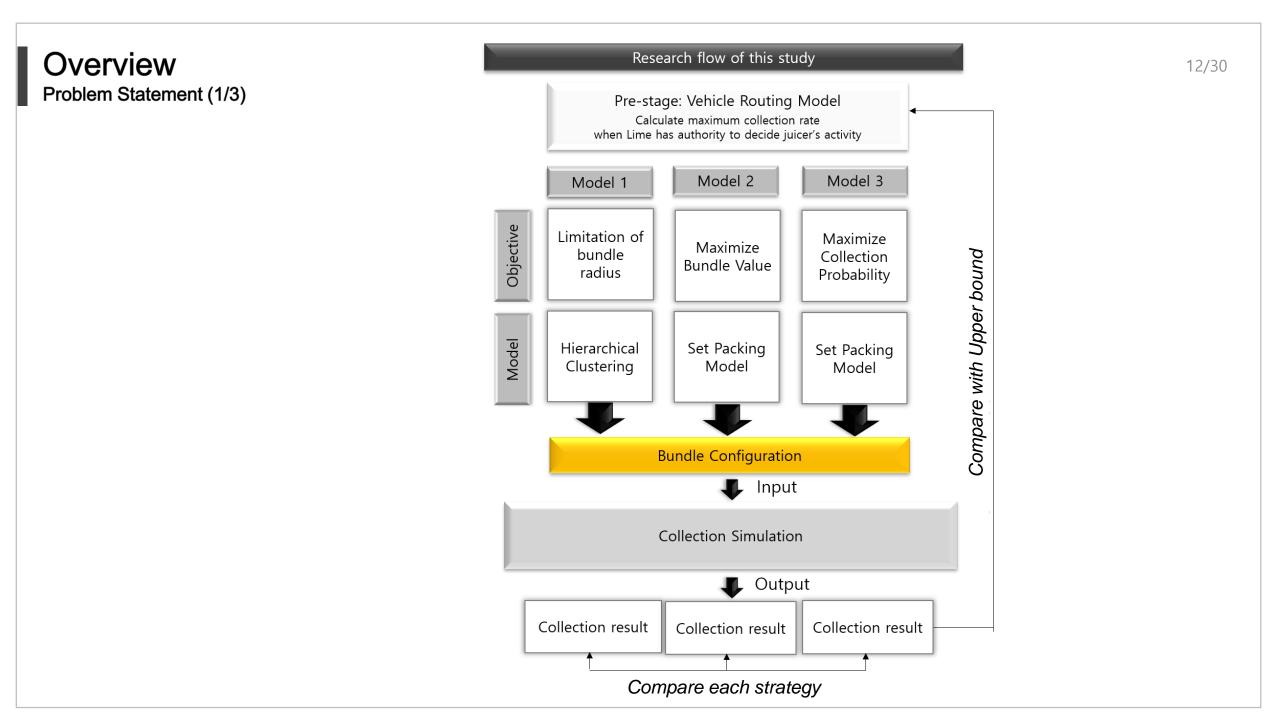
2 properties of a bundle

1. A person's value of getting items together as a package is greater than the sum of values for each item individually

 A person's value of getting items together as a package is less than the sum of values for each item individually

Juicer system

- \rightarrow Juicers start collection all together at predetermined time.
- \rightarrow Juicers do not know other juicer's location or status.
- \rightarrow Maximum number of reservations is limited to one scooter or one bundle.
- → Partial collection of a bundle is allowed; scooters in a bundle can be collected individually not as whole.


Juicer capacity

- \rightarrow Juicers cannot charge more than the total charge amount possible with the chargers at home.
- \rightarrow Juicer's capacity is equal.

Juicer behavior

- \rightarrow Once the juicer completes the collection and return home, the collection activity that day is over.
- → Juicer collects **the most valuable scooter or bundles**, which offer the highest profit per distance to collect and return home.

 \rightarrow If juicer achieves the target amount (e.g. collected half of chargers), they only collect scooters of which value is more than certain criterion.

3. Mathematical Models

Pre-stage Model

Mathematical Models (1/8)

Multi depot capacitated VRP

- Assumes that the company can control the juicers to pick up allocated scooters
- Calculate maximum collection rate of given scooter/juicer data

Sets

- N : Set of scooter nodes
- *K* : Set of juicer nodes (= depot nodes)
- V : Set of nodes $(= N \cup K)$
- Π : Set of arcs which violates relationship of juicer and depot

Decision Variables

- x_{ij}^k : 1, if juicer k made collection from scooter i to j 0, otherwise
- u_i^k : Juicer k's filled capacity in after collecting scooter i

Parameters

- *M* : Large number
- r : Small number
- *Q* : Juicer's capacity of possible amount to charge battery
- β : Threshold value of capacity filled by juicer where juicer satisfied expected amount of reward
- α : Baseline value of scooter (=profit/distance to reach and go back home) when juicer's filled capacity is over β
- p_i : Collection price of scooter j
- q_i : Battery that needs to be charged of scooter j
- $A[i, k, \alpha]$: Set of scooters *j* of which value is under α when juicer *k*'s capacity is over β % after collecting scooter *i*

Pre-stage Model 15/30 Mathematical Models (2/8) Multi depot capacitated VRP $Max \quad \sum_{i \in V} \sum_{j \in V, i \neq j} \sum_{k \in K} (1 - r * p_j) * x_{ij}^k$ Maximize the number of collected scooters while lowering the cost of the sum of collection price (7) $u_i^k = 0, \quad \forall i \in K, \forall k \in K, i = k$ Filled capacity in depot is zero (1) $x_{ij}^k = 0$, (i, j, k) $\in \Pi$ Remove juicer-depot violation (8) $u_i^k + q_j \leq u_i^k + M(1 - x_{ij}^k), \quad \forall i \in V, \forall j \in N, \forall k \in K, i \neq j$ Capacity update (2) $\sum_{i \in N} x_{ki}^k = 1, \quad \forall k \in K$ Only travels once (9) $u_j^k \leq \left(\sum_{p \in V, p \neq j} x_{pj}^k\right) * M, \quad \forall j \in N, \forall k \in K$ Capacity is positive (3) $\sum_{i \in N} x_{ik}^k = 1$, $\forall k \in K$ only when juicer visited Balance equation (10) $u_i^k - Q * \beta \le M * (1 - x_{ij}^k), \quad \forall i \in V, \forall k \in K, \forall j \in A[i, k, \alpha]$ (4) $\sum_{p \in V, p \neq i} x_{pi}^k = \sum_{t \in V, t \neq i} x_{it}^k$, $\forall i \in N, \forall k \in K$ Juicer behavior constraint (11) $x_{ii}^k \in \{0,1\}, \forall i, j \in V, \forall k \in K$ Scooter can be (5) $\sum_{i \in V, i \neq j} \sum_{k \in K} x_{ij}^k \leq 1, \quad \forall j \in N$ collected by one juicer maximum or (12) $u_i^k \ge 0$, $\forall i \in V, \forall k \in K$ (6) $\sum_{i \in V, i \neq i} \sum_{k \in K} x_{ii}^k \leq 1, \quad \forall i \in N$ not visited at all

Pre-stage Model Mathematical Models (3/8)

(10)

Juicer behavior constraint

$$u_i^k - Q * \beta \le M * (1 - x_{ij}^k), \qquad \forall i \in V, \forall k \in K, \forall j \in A[i, k, \alpha]$$

precomputed

Contains scooters j which are impossible to collect when juicer collected scooter i and k's filled capacity is over $\beta\%$ of the maximum capacity

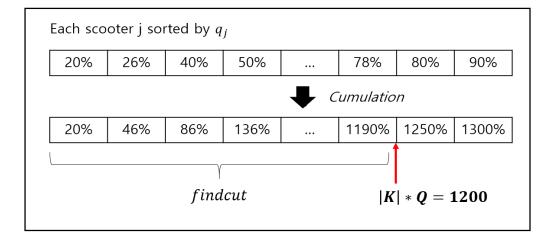
Juicer behavior assumption

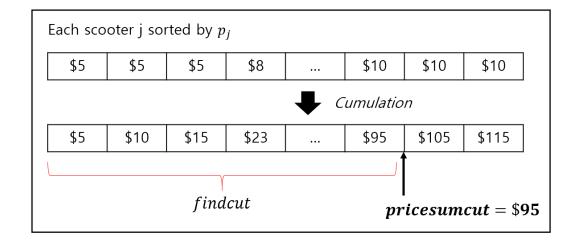
If a juicer collects more than β % of the maximum capacity,

only the scooters that are worth more than α will be collected

Value of scooter (node) j from scooter (node) i $= \frac{\text{Price of scooter j}}{\text{Distance from node i to j + Distance from j to depot}}$

Pre-stage Model Mathematical Models (4/8)

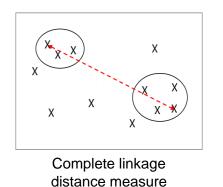

Cut constraint

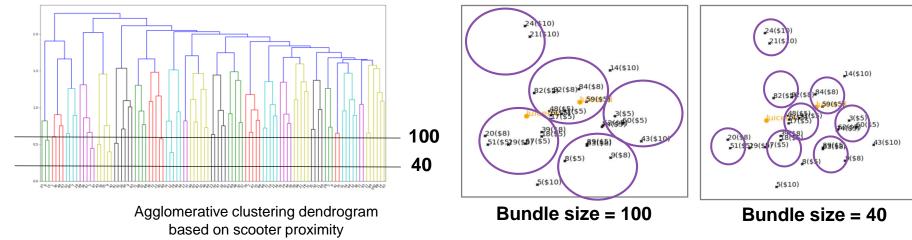

(13)
$$\sum_{i \in V} \sum_{j \in V, i \neq j} \sum_{k \in K} x_{ij}^k \leq findcut + |K|$$

Upper bound of the number of collected scooters

(14)
$$\sum_{i \in V} \sum_{j \in V, i \neq j} \sum_{k \in K} \left(1 - r * p_j \right) * x_{ij}^k \leq findcut + |K| - r * pricesumcut$$

Upper bound of objective function considering price sum of collected scooters

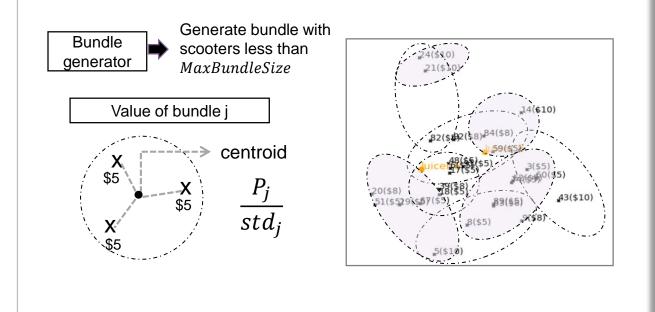


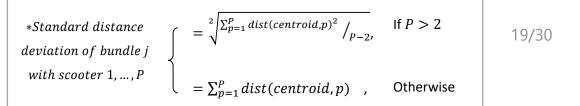


Three types of bundling model (1) Mathematical Models (5/8)

Model I – Limiting cluster size

- Generate bundle of scooters with high proximity
- Create bundles with complementary properties
- Limitation of bundle size with a predetermined radius





Three types of bundling model (2) Mathematical Models (6/8)

Model Π – Maximize the sum of bundle value

- ldea
 - ✓ Generate bundle candidates with nearby scooters
 - ✓ Select winning bundles by Set packing model

(MD 2) Set Packing Model

 x_i

$$Max \quad \sum_{j \in \mathbf{B}} (\frac{P_j}{std_j}) x_j$$

s.t
$$\sum_{j \in B} a_{ij} x_j \leq 1$$
, $i \in N$
 $x_j \in \{0, 1\}$, $j \in B$

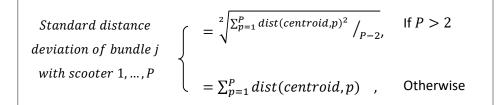
Maximize bundle value

Each scooter should be included in only one bundle

- : Binary decision variable $\begin{cases}
 = 1, & \text{If bundle } j \in B \text{ is selected as winning bundle} \\
 = 0, & \text{Otherwise}
 \end{cases}$
- P_j : Price of bundle j (= sum of scooter price in the bundle j)
- std_i : Standard distance deviation of scooters in bundle j *
- $a_{ij} \subseteq 1$, If bundle $j \in B$ contains scooter $i \in N$
 - = 0, Otherwise

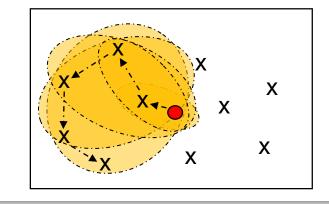
*Levine, Ned. "CrimeStat III: a spatial statistics program for the analysis of crime incident locations (version 3.0)." Houston (TX): Ned Levine & Associates/Washington, DC: National Institute of Justice (2004).

Three types of bundling model (2)


Mathematical Models (7/8)

INPUT

PROCEDURE


Bundle generator

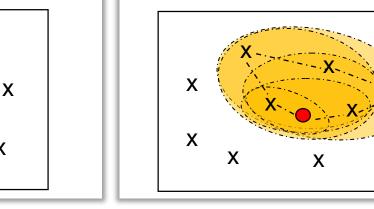
scooter node $\forall i \in \mathbb{N}$

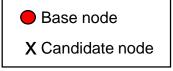
1. Near pack generator

Generate bundles by adding nearest scooter to the last added scooter

2. Node pack generator

Х


Х


Generate bundles by adding the nearest scooters one by one depending on the distance from the base node

Х

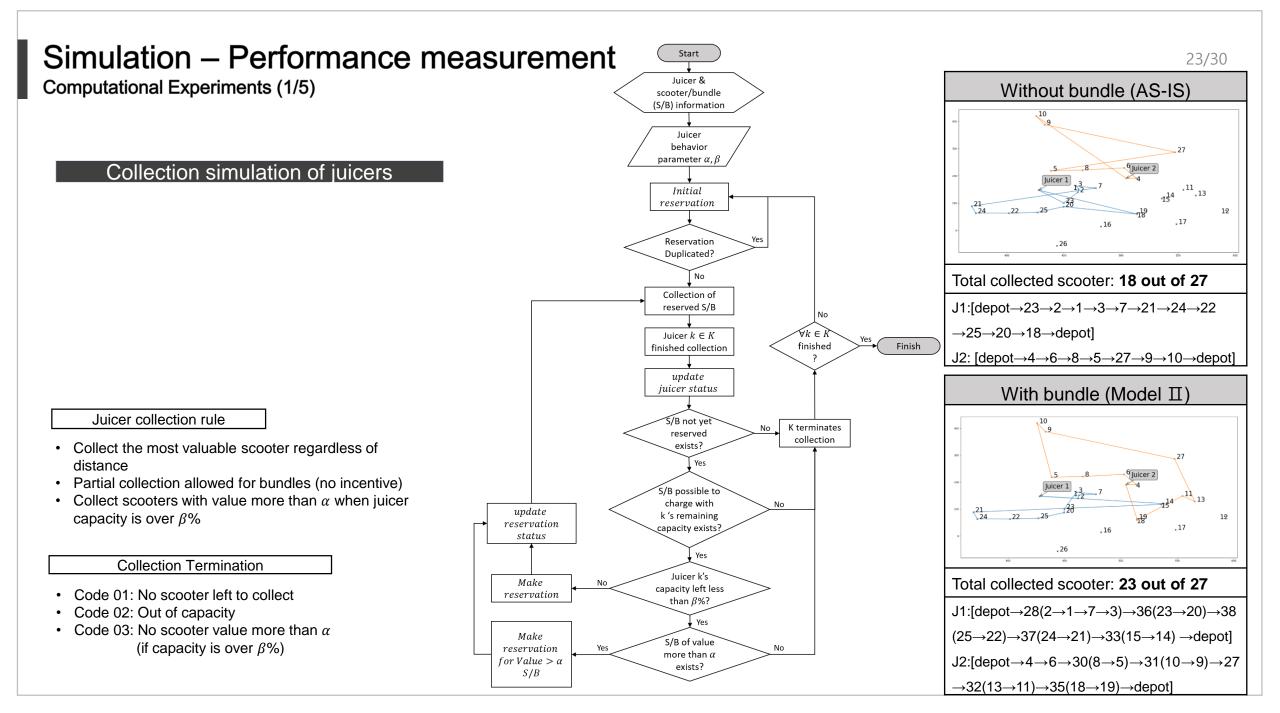
3. STD pack generator

Generate bundles by adding the scooter which increases the standard distance deviation to the smallest

Х

Result bundle = 1. + 2. + 3.OUTPUT

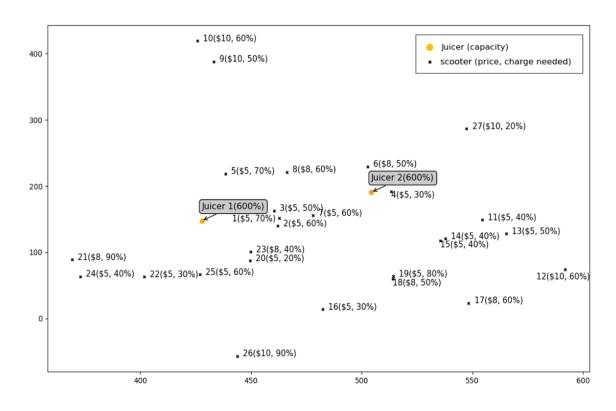
Three types of bundling model (3) Mathematical Models (8/8)


Model III – Maximize the sum of probability of collection

- Idea
 - Select bundle configuration of which collection probability sum is maximized
 - ✓ Generate bundle candidates with bundle generator
 - ✓ Select winning bundles by Set packing model

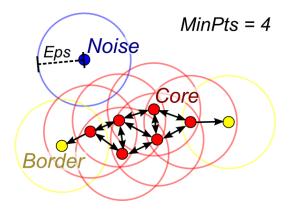
Pr(k i)	$\begin{cases} = \exp(-\lambda * dist(k, j)/V_j), \\ = 0, \end{cases}$	If $dist(k, j) \leq \delta$
	l = 0,	Otherwise
λ	: decay coefficient	
δ	: distance limitation parameter	
dist(k,j)	: distance between juicer k's depot	and central point of bundle j
	$\Pr(j) = 1 - \prod_{k \in K} (1 - 1)$	$\Pr(k, j)$

	21/30
(MD 3) Set Packing Model	
$Max \sum_{j \in B} (\Pr(j) - \gamma * Incentive_j) x_j$	Maximize collection probability
s.t $\sum_{j \in \mathbf{B}} a_{ij} x_j \leq 1$, $i \in N$	Each scooter should be included in only one bundle
$\sum_{j \in B} Incentive_j x_j \leq Budget$	Total incentive cannot exceed
$x_j \in \{0,1\}, \qquad j \in \mathbf{B}$	Budget
<i>x_j</i> : Binary decision variable	
$\begin{cases} = 1, & \text{If bundle } j \in B \text{ is selected} \\ = 0, & \text{Otherwise} \end{cases}$	
Pr(j) : Probability of bundle j being co	
<i>Incentive</i> _j : incentive provided for suppleme	ent bundle according
to bundle incentive rate	
Budget : Budget for incentive	
γ : coefficient	
$a_{ij} \int = 1$, If bundle $j \in B$ contains	scooter $i \in N$
= 0, Otherwise	


4. Computational Experiments

Description of parameters

Computational Experiments (2/5)

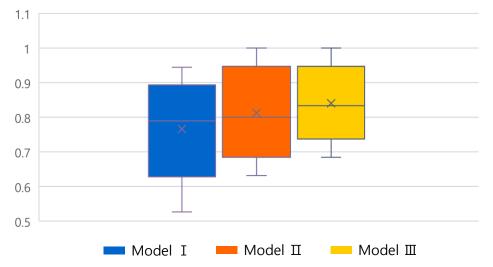

• test instance of 2 juicers and 27 scooters

Description of data generation

		Value	Method
	Price	\$5, \$8, \$10	DBSCAN clustering
Scooter	Battery level	10%~80%	Selected randomly
Juicer	Capacity	600%	Fixed
	α	0.03	Fixed
	β	0.5	Fixed

 DBSCAN clustering (Density based spatial clustering of applications with noise)

✓ Core: \$5

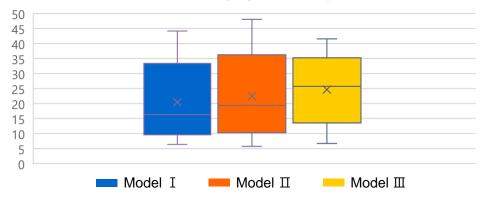

- ✓ Border: \$8
- ✓ Noise: \$10

MinPts = 3, Eps = 60

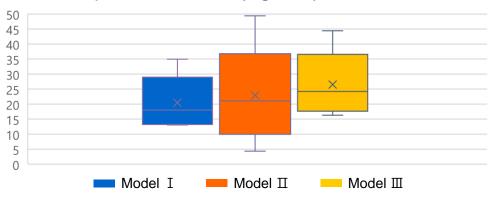
Pre-model vs bundling model

Clustered scooter(#) : Randomly located scooter(#)	Total scooter(#)	Total juicers
15 : 5	20	2

Collection simulation result compared with pre-model (small data set)



Results Computational Experiments (4/5)


AS-IS vs Model

Scenario	Clustered scooter(#) : Randomly located scooter(#)	Total scooter(#)	Total Juicers
I	120 : 30	150	10
	80 : 70	150	10

Collection simulation result compared with AS-IS (big data set) - Scenario I

Collection simulation result compared with AS-IS (big data) – Scenario ${\rm I\!I}$

Results Computational Experiments (5/5)

Juicer status

Scenario	Clustered scooter(#) : Randomly located scooter(#)	Total scooter(#)	Total Juicers
I	120 : 30	150	10
	80 : 70	150	10

Juicer information - Scenario I

Scenario I (120:30)	AS-IS	Model I	Model II	Model III
Achievement rate(%)	62.5333	73.4083	74.9292	77.1417
Total distance(10m)	1038.6482	991.4776	1080.9820	1098.6147
Profit(\$)	64.6067	69.7500	72.8667	73.8549
Margin	54.2202	59.8352	62.0568	62.8688

Juicer information - Scenario II

Scenario II (80:70)	AS-IS	Model I	Model II	Model III
Achievement rate(%)	60.9458	72.3750	73.9875	76.3000
Total distance(10m)	1165.1820	1074.5587	1210.7677	1191.5665
Profit(\$)	72.0667	76.2900	81.3600	82.4004
Margin	60.4148	65.5444	69.2523	70.4847

5. Conclusion

Conclusion

Contribution

- Research on gig economy-based scooter charging operation
- Proposed three bundling models to improve collection rate of scooters
- Provided efficient strategy for both the company and juicers
 - \rightarrow For Lime (Company)
 - ✓ Lowering cost of recharging, increasing competitive advantage
 - ✓ Help to control proportion of juicer and Lime's full-time worker and induce juicers to join the community
 - \rightarrow For Juicer (Gig worker)
 - ✓ Lower uncertainty of juicers from competition by providing bundles and helping juicers to plan their route
 - ✓ Assist juicers to obtain higher margin

감사합니다